This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A355522 #10 Jul 14 2022 09:34:50 %S A355522 2,2,1,3,1,1,2,3,1,1,4,3,2,1,1,2,6,3,2,1,1,4,6,6,2,2,1,1,3,10,6,5,2,2, %T A355522 1,1,4,11,11,6,4,2,2,1,1,2,16,13,10,5,4,2,2,1,1,6,17,19,12,9,4,4,2,2, %U A355522 1,1,2,24,24,18,11,8,4,4,2,2,1,1 %N A355522 Triangle read by rows where T(n,k) is the number of reversed integer partitions of n with maximal difference k, if singletons have maximal difference 0. %C A355522 The triangle starts with n = 2, and k ranges from 0 to n - 2. %H A355522 Gus Wiseman, <a href="/A325325/a325325.txt">Sequences counting and ranking integer partitions by the differences of their successive parts.</a> %e A355522 Triangle begins: %e A355522 2 %e A355522 2 1 %e A355522 3 1 1 %e A355522 2 3 1 1 %e A355522 4 3 2 1 1 %e A355522 2 6 3 2 1 1 %e A355522 4 6 6 2 2 1 1 %e A355522 3 10 6 5 2 2 1 1 %e A355522 4 11 11 6 4 2 2 1 1 %e A355522 2 16 13 10 5 4 2 2 1 1 %e A355522 6 17 19 12 9 4 4 2 2 1 1 %e A355522 2 24 24 18 11 8 4 4 2 2 1 1 %e A355522 4 27 34 22 17 10 7 4 4 2 2 1 1 %e A355522 4 35 39 33 20 15 9 7 4 4 2 2 1 1 %e A355522 5 39 56 39 30 19 14 8 7 4 4 2 2 1 1 %e A355522 For example, row n = 8 counts the following reversed partitions: %e A355522 (8) (233) (35) (125) (26) (116) (17) %e A355522 (44) (1223) (134) (11114) (1115) %e A355522 (2222) (11123) (224) %e A355522 (11111111) (11222) (1124) %e A355522 (111122) (1133) %e A355522 (1111112) (111113) %t A355522 Table[Length[Select[Reverse/@IntegerPartitions[n], If[Length[#]==1,0,Max@@Differences[#]]==k&]],{n,2,15},{k,0,n-2}] %Y A355522 Crossrefs found in the link are not repeated here. %Y A355522 Leading terms are A000005. %Y A355522 Row sums are A000041. %Y A355522 Counts m such that A056239(m) = n and A286470(m) = k. %Y A355522 This is a trimmed version of A238353, which extends to k = n. %Y A355522 For minimum instead of maximum we have A238354. %Y A355522 Ignoring singletons entirely gives A238710. %Y A355522 A001522 counts partitions with a fixed point (unproved), ranked by A352827. %Y A355522 A115720 and A115994 count partitions by their Durfee square. %Y A355522 A279945 counts partitions by number of distinct differences. %Y A355522 Cf. A064428, A091602, A179254, A238352, A239455, A286469, A325404, A355524, A355526, A355532. %K A355522 nonn,tabl %O A355522 2,1 %A A355522 _Gus Wiseman_, Jul 08 2022