cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A355522 Triangle read by rows where T(n,k) is the number of reversed integer partitions of n with maximal difference k, if singletons have maximal difference 0.

This page as a plain text file.
%I A355522 #10 Jul 14 2022 09:34:50
%S A355522 2,2,1,3,1,1,2,3,1,1,4,3,2,1,1,2,6,3,2,1,1,4,6,6,2,2,1,1,3,10,6,5,2,2,
%T A355522 1,1,4,11,11,6,4,2,2,1,1,2,16,13,10,5,4,2,2,1,1,6,17,19,12,9,4,4,2,2,
%U A355522 1,1,2,24,24,18,11,8,4,4,2,2,1,1
%N A355522 Triangle read by rows where T(n,k) is the number of reversed integer partitions of n with maximal difference k, if singletons have maximal difference 0.
%C A355522 The triangle starts with n = 2, and k ranges from 0 to n - 2.
%H A355522 Gus Wiseman, <a href="/A325325/a325325.txt">Sequences counting and ranking integer partitions by the differences of their successive parts.</a>
%e A355522 Triangle begins:
%e A355522   2
%e A355522   2  1
%e A355522   3  1  1
%e A355522   2  3  1  1
%e A355522   4  3  2  1  1
%e A355522   2  6  3  2  1  1
%e A355522   4  6  6  2  2  1  1
%e A355522   3 10  6  5  2  2  1  1
%e A355522   4 11 11  6  4  2  2  1  1
%e A355522   2 16 13 10  5  4  2  2  1  1
%e A355522   6 17 19 12  9  4  4  2  2  1  1
%e A355522   2 24 24 18 11  8  4  4  2  2  1  1
%e A355522   4 27 34 22 17 10  7  4  4  2  2  1  1
%e A355522   4 35 39 33 20 15  9  7  4  4  2  2  1  1
%e A355522   5 39 56 39 30 19 14  8  7  4  4  2  2  1  1
%e A355522 For example, row n = 8 counts the following reversed partitions:
%e A355522   (8)         (233)      (35)      (125)    (26)    (116)  (17)
%e A355522   (44)        (1223)     (134)     (11114)  (1115)
%e A355522   (2222)      (11123)    (224)
%e A355522   (11111111)  (11222)    (1124)
%e A355522               (111122)   (1133)
%e A355522               (1111112)  (111113)
%t A355522 Table[Length[Select[Reverse/@IntegerPartitions[n], If[Length[#]==1,0,Max@@Differences[#]]==k&]],{n,2,15},{k,0,n-2}]
%Y A355522 Crossrefs found in the link are not repeated here.
%Y A355522 Leading terms are A000005.
%Y A355522 Row sums are A000041.
%Y A355522 Counts m such that A056239(m) = n and A286470(m) = k.
%Y A355522 This is a trimmed version of A238353, which extends to k = n.
%Y A355522 For minimum instead of maximum we have A238354.
%Y A355522 Ignoring singletons entirely gives A238710.
%Y A355522 A001522 counts partitions with a fixed point (unproved), ranked by A352827.
%Y A355522 A115720 and A115994 count partitions by their Durfee square.
%Y A355522 A279945 counts partitions by number of distinct differences.
%Y A355522 Cf. A064428, A091602, A179254, A238352, A239455, A286469, A325404, A355524, A355526, A355532.
%K A355522 nonn,tabl
%O A355522 2,1
%A A355522 _Gus Wiseman_, Jul 08 2022