A355524 Minimal difference between adjacent prime indices of n > 1, or 0 if n is prime.
0, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 3, 1, 0, 0, 0, 0, 0, 2, 4, 0, 0, 0, 5, 0, 0, 0, 1, 0, 0, 3, 6, 1, 0, 0, 7, 4, 0, 0, 1, 0, 0, 0, 8, 0, 0, 0, 0, 5, 0, 0, 0, 2, 0, 6, 9, 0, 0, 0, 10, 0, 0, 3, 1, 0, 0, 7, 1, 0, 0, 0, 11, 0, 0, 1, 1, 0, 0, 0, 12, 0, 0, 4, 13, 8
Offset: 2
Keywords
Examples
The prime indices of 9842 are {1,4,8,12}, with differences (3,4,4), so a(9842) = 3.
Links
Crossrefs
Crossrefs found in the link are not repeated here.
Positions of first appearances are A077017 w/o the first term.
Positions of terms > 0 are A120944.
Positions of zeros are A130091.
Positions of terms > 1 are A325161.
If singletons (k) have minimal difference k we get A355525.
Positions of 1's are A355527.
Prepending 0 to the prime indices gives A355528.
Programs
-
Mathematica
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; Table[If[PrimeQ[n],0,Min@@Differences[primeMS[n]]],{n,2,100}]
Comments