This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A355527 #9 Jul 13 2022 20:37:00 %S A355527 6,15,30,35,42,66,70,77,78,102,105,114,138,143,154,165,174,186,195, %T A355527 210,221,222,231,246,255,258,282,285,286,318,323,330,345,354,366,385, %U A355527 390,402,426,429,435,437,438,442,455,462,465,474,498,510,534,546,555,570 %N A355527 Squarefree numbers having at least one pair of consecutive prime factors. Numbers n such that the minimal difference between adjacent prime indices of n is 1. %C A355527 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. %C A355527 A number is squarefree if it is not divisible by any perfect square > 1. %C A355527 A number has consecutive prime factors if it is divisible by both prime(k) and prime(k+1) for some k. %H A355527 Gus Wiseman, <a href="/A325325/a325325.txt">Sequences counting and ranking integer partitions by the differences of their successive parts</a>. %F A355527 Intersection of A005117 (squarefree) and A104210 (has consecutive primes). %e A355527 The terms together with their prime indices begin: %e A355527 6: {1,2} %e A355527 15: {2,3} %e A355527 30: {1,2,3} %e A355527 35: {3,4} %e A355527 42: {1,2,4} %e A355527 66: {1,2,5} %e A355527 70: {1,3,4} %e A355527 77: {4,5} %e A355527 78: {1,2,6} %e A355527 102: {1,2,7} %e A355527 105: {2,3,4} %e A355527 114: {1,2,8} %e A355527 138: {1,2,9} %e A355527 143: {5,6} %e A355527 154: {1,4,5} %e A355527 165: {2,3,5} %e A355527 174: {1,2,10} %e A355527 186: {1,2,11} %e A355527 195: {2,3,6} %e A355527 210: {1,2,3,4} %t A355527 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A355527 Select[Range[100],Min@@Differences[primeMS[#]]==1&] %Y A355527 Crossrefs found in the link are not repeated here. %Y A355527 All terms are in A005117, complement A013929. %Y A355527 For minimal difference <= 1 we have A055932. %Y A355527 For maximal instead of minimal difference = 1 we have A066312. %Y A355527 For minimal difference > 1 we have A325160. %Y A355527 If zero is considered a prime index we get A355530. %Y A355527 A001522 counts partitions with a fixed point (unproved), ranked by A352827. %Y A355527 A287352, A355533, A355534, A355536 list the differences of prime indices. %Y A355527 A355524 or A355525 give minimal difference between prime indices. %Y A355527 Cf. A000005, A000040, A056239, A120944, A130091, A238353, A238354, A286470, A325161, A352822, A355526, A355531. %K A355527 nonn %O A355527 1,1 %A A355527 _Gus Wiseman_, Jul 10 2022