This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A355529 #8 Jul 24 2022 14:13:39 %S A355529 2,4,6,8,9,10,12,14,16,18,20,21,22,24,25,26,27,28,30,32,34,36,38,40, %T A355529 42,44,45,46,48,49,50,52,54,56,57,58,60,62,63,64,66,68,70,72,74,75,76, %U A355529 78,80,81,82,84,86,88,90,92,94,96,98,99,100,102,104,105,106 %N A355529 Numbers of which it is not possible to choose a different prime factor of each prime index (with multiplicity). %C A355529 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. %C A355529 Includes all even numbers. %e A355529 The terms together with their prime indices begin: %e A355529 2: {1} %e A355529 4: {1,1} %e A355529 6: {1,2} %e A355529 8: {1,1,1} %e A355529 9: {2,2} %e A355529 10: {1,3} %e A355529 12: {1,1,2} %e A355529 14: {1,4} %e A355529 16: {1,1,1,1} %e A355529 18: {1,2,2} %e A355529 20: {1,1,3} %e A355529 21: {2,4} %e A355529 22: {1,5} %e A355529 24: {1,1,1,2} %t A355529 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A355529 Select[Range[100],Select[Tuples[primeMS/@primeMS[#]],UnsameQ@@#&]=={}&] %Y A355529 The odd case is A355535. %Y A355529 The case of all divisors (not just primes) is A355740, zeros of A355739. %Y A355529 These choices are variously counted by A355741, A355744, A355745. %Y A355529 A001414 adds up distinct prime divisors, counted by A001221. %Y A355529 A003963 multiplies together the prime indices of n. %Y A355529 A056239 adds up prime indices, row sums of A112798, counted by A001222. %Y A355529 A120383 lists numbers divisible by all of their prime indices. %Y A355529 A324850 lists numbers divisible by the product of their prime indices. %Y A355529 A355731 counts choices of a divisor of each prime index, firsts A355732. %Y A355529 Cf. A000720, A076610, A318979, A335433, A335448, A355733. %K A355529 nonn %O A355529 1,1 %A A355529 _Gus Wiseman_, Jul 24 2022