This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A355530 #9 Jul 13 2022 20:37:13 %S A355530 2,6,10,14,15,22,26,30,34,35,38,42,46,58,62,66,70,74,77,78,82,86,94, %T A355530 102,105,106,110,114,118,122,130,134,138,142,143,146,154,158,165,166, %U A355530 170,174,178,182,186,190,194,195,202,206,210,214,218,221,222,226,230 %N A355530 Squarefree numbers that are either even or have at least one pair of consecutive prime factors. Numbers n such that the minimal difference between adjacent 0-prepended prime indices of n is 1. %C A355530 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. %C A355530 A number is squarefree if it is not divisible by any perfect square > 1. %C A355530 A number has consecutive prime factors if it is divisible by both prime(k) and prime(k+1) for some k. %H A355530 Gus Wiseman, <a href="/A325325/a325325.txt">Sequences counting and ranking integer partitions by the differences of their successive parts</a>. %F A355530 Equals A005117 /\ (A005843 \/ A104210). %e A355530 The terms together with their prime indices begin: %e A355530 2: {1} %e A355530 6: {1,2} %e A355530 10: {1,3} %e A355530 14: {1,4} %e A355530 15: {2,3} %e A355530 22: {1,5} %e A355530 26: {1,6} %e A355530 30: {1,2,3} %e A355530 34: {1,7} %e A355530 35: {3,4} %e A355530 38: {1,8} %e A355530 42: {1,2,4} %e A355530 46: {1,9} %e A355530 58: {1,10} %e A355530 62: {1,11} %e A355530 66: {1,2,5} %e A355530 70: {1,3,4} %t A355530 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A355530 Select[Range[100],Min@@Differences[Prepend[primeMS[#],0]]==1&] %Y A355530 Crossrefs found in the link are not repeated here. %Y A355530 All terms are in A005117, complement A013929. %Y A355530 For maximal instead of minimal difference we have A055932 or A066312. %Y A355530 Not prepending zero gives A355527. %Y A355530 A001522 counts partitions with a fixed point (unproved), ranked by A352827. %Y A355530 A056239 adds up prime indices. %Y A355530 A238352 counts partitions by fixed points, rank statistic A352822. %Y A355530 A279945 counts partitions by number of distinct differences. %Y A355530 A287352, A355533, A355534, A355536 list the differences of prime indices. %Y A355530 A355524 gives minimal difference if singletons go to 0, to index A355525. %Y A355530 Cf. A000005, A000040, A120944, A238354, A286469, A286470, A325160, A325161, A355526, A355531. %K A355530 nonn %O A355530 1,1 %A A355530 _Gus Wiseman_, Jul 10 2022