A355537 Number of ways to choose a sequence of prime factors, one of each integer from 2 to n.
1, 1, 1, 1, 1, 2, 2, 2, 2, 4, 4, 8, 8, 16, 32, 32, 32, 64, 64, 128, 256, 512, 512, 1024, 1024, 2048, 2048, 4096, 4096, 12288, 12288, 12288, 24576, 49152, 98304, 196608, 196608, 393216, 786432, 1572864, 1572864, 4718592, 4718592, 9437184, 18874368, 37748736
Offset: 1
Keywords
Examples
The a(n) choices for n = 2, 6, 10, 12, with prime(k) replaced by k: (1) (12131) (121314121) (12131412151) (12132) (121314123) (12131412152) (121324121) (12131412351) (121324123) (12131412352) (12132412151) (12132412152) (12132412351) (12132412352)
Crossrefs
The sum of the same integers is A000096.
The version for divisors instead of prime factors is A066843.
The integers themselves are the rows of A131818.
The version with multiplicity is A327486.
Counting sequences instead of multisets gives A355746.
A001222 counts prime factors with multiplicity.
A003963 multiplies together the prime indices of n.
Programs
-
Mathematica
Table[Times@@PrimeNu/@Range[2,m],{m,2,30}]
Comments