This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A355540 #49 Jul 10 2022 16:12:56 %S A355540 1,1,-1,1,-2,1,1,-4,5,-2,1,-10,29,-32,12,1,-34,269,-728,780,-288,1, %T A355540 -154,4349,-33008,88140,-93888,34560,1,-874,115229,-3164288,23853900, %U A355540 -63554688,67633920,-24883200,1,-5914,4520189,-583918448,15971865420,-120287210688,320383261440,-340899840000,125411328000 %N A355540 Triangle read by rows. Row n gives the coefficients of Product_{k=0..n} (x - k!) expanded in decreasing powers of x, with row 0 = {1}. %C A355540 Essentially the same as A136457 with rows in reversed order. %C A355540 Let M be an n X n matrix filled by Bell numbers A000110(j+k-2) with rows and columns j = 1..n, k = 1..n; then its determinant equals unsigned T(n, n). If we use A000110(j+k), the determinant will equal unsigned T(n+1, n). Can we find a general formula for T(n+m, n) based on determinants of matrices and Bell numbers? %F A355540 T(n, 0) = 1. %F A355540 T(n, 1) = -A003422(n). %F A355540 T(n, 2) = Sum_{m=0..n-1} !m*m!. %F A355540 T(n, k) = Sum_{m=0..n-1} -T(m, k-1)*m!. %F A355540 T(n, n) = (-1)^n*A000178(n). %F A355540 T(n, n-1) = -(-1)^n*A203227(n), for n > 0. %F A355540 T(n+1, n) = (-1)^n*A000178(n)*A000522(n). %F A355540 Sum_{m=0..k} T(n, k) = 0, for n > 0. %F A355540 Sum_{m=0..k} abs(T(n, k)) = A217757(n+1). %e A355540 The triangle begins: %e A355540 1; %e A355540 1, -1; %e A355540 1, -2, 1; %e A355540 1, -4, 5, -2; %e A355540 1, -10, 29, -32, 12; %e A355540 1, -34, 269, -728, 780, -288; %e A355540 1, -154, 4349, -33008, 88140, -93888, 34560; %e A355540 1, -874, 115229, -3164288, 23853900, -63554688, 67633920, -24883200; %e A355540 ... %e A355540 Row 4: x^4 - 10*x^3 + 29*x^2 - 32*x + 12 = (x-0!)*(x-1!)*(x-2!)*(x-3!). %e A355540 Illustration of T(1 to 5,1) as tree structure: %e A355540 . %e A355540 . o o o o o %e A355540 . o o o o %e A355540 . o o o o o o %e A355540 . ooo ooo ooo ooo %e A355540 . oooo oooo oooo oooo oooo oooo %e A355540 . 1 +1 = 2 +2 = 4 +2*3 = 10 +6*4 = 34 %e A355540 . %e A355540 Illustration of T(2 to 4,2) as tree structure: %e A355540 . %e A355540 . o o -----o----- %e A355540 . o o o o %e A355540 . o o ---o--- ---o--- %e A355540 . o o o o o o %e A355540 . o o o o o o %e A355540 . o o o o o o o o o o o o %e A355540 . 1 +2*2 = 5 +6*4 = 29 %e A355540 . %e A355540 Illustration of T(3 to 4,3) as tree structure: %e A355540 . ------------ %e A355540 . oo ---o--- ---o--- %e A355540 . o o o o o o %e A355540 . o o o o o o o o o o o o %e A355540 . o o o o o o o o o o o o %e A355540 . 2 +6*5 = 32 %o A355540 (PARI) T(n, k) = polcoeff(prod(m=0, n-1, (x-m!)), n-k); %Y A355540 Cf. A000110, A000178, A000522, A003422, A136457, A203227, A217757. %Y A355540 Cf. A008276 (The Stirling numbers of the first kind in reverse order). %Y A355540 Cf. A039758 (Coefficients for polynomials with roots in odd numbers). %Y A355540 Cf. A349226 (Coefficients for polynomials with roots in x^x). %K A355540 sign,tabl %O A355540 0,5 %A A355540 _Thomas Scheuerle_, Jul 06 2022