cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A355558 The independence polynomial of the n-halved cube graph evaluated at -1.

This page as a plain text file.
%I A355558 #15 Jul 17 2022 23:28:18
%S A355558 0,-1,-3,-3,25,-135,-2079,1879969
%N A355558 The independence polynomial of the n-halved cube graph evaluated at -1.
%C A355558 The independence number alpha(G) of a graph is the cardinality of the largest independent vertex set. The n-halved graph has alpha(G) = A005864(n). The independence polynomial for the n-halved cube is given by Sum_{k=0..alpha(G)} A355226(n,k)*t^k, meaning that a(n) is the alternating sum of row n of A355226.
%H A355558 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/IndependencePolynomial.html">Independence polynomial</a>
%H A355558 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/HalvedCubeGraph.html">Halved cube graph</a>
%e A355558 Row 5 of A355226 is 1, 16, 40. This means the 5-halved cube graph has independence polynomial 1 + 16*t + 40*t^2. Taking the alternating row sum of row 5, or evaluating the polynomial at -1, gives us 1 - 16 + 40 = 25 = a(5).
%o A355558 (Sage) from sage.graphs.independent_sets import IndependentSets
%o A355558 def a(n):
%o A355558     if n == 1:
%o A355558         g = graphs.CompleteGraph(1)
%o A355558     else:
%o A355558         g = graphs.HalfCube(n)
%o A355558     icount=0
%o A355558     for Iset in IndependentSets(g):
%o A355558         if len(Iset) % 2 == 0:
%o A355558             icount += 1
%o A355558         else:
%o A355558             icount += -1
%o A355558     return icount
%Y A355558 Cf. A005864, A355226, A288943.
%K A355558 sign,more
%O A355558 1,3
%A A355558 _Christopher Flippen_, Jul 06 2022