This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A355561 #20 Jul 08 2022 19:06:05 %S A355561 1,1,2,24,3236,7173370,330736663032,382149784071841422, %T A355561 12983632019302863224103688,14912674110246473369128526689667934, %U A355561 654972005961623890774153743504185499487372010,1228018869478731662593970252736815943512232438560622483276 %N A355561 Number of n-tuples (p_1, p_2, ..., p_n) of positive integers such that p_{i-1} <= p_i <= n^(i-1). %H A355561 Alois P. Heinz, <a href="/A355561/b355561.txt">Table of n, a(n) for n = 0..36</a> %e A355561 a(0) = 1: ( ). %e A355561 a(1) = 1: (1). %e A355561 a(2) = 2: (1,1), (1,2). %e A355561 a(3) = 24: (1,1,1), (1,1,2), (1,1,3), (1,1,4), (1,1,5), (1,1,6), (1,1,7), (1,1,8), (1,1,9), (1,2,2), (1,2,3), (1,2,4), (1,2,5), (1,2,6), (1,2,7), (1,2,8), (1,2,9), (1,3,3), (1,3,4), (1,3,5), (1,3,6), (1,3,7), (1,3,8), (1,3,9). %p A355561 b:= proc(n, k, i) option remember; `if`(n=0, 1, %p A355561 add(b(n-1, k, j), j=1..min(i, k^(n-1)))) %p A355561 end: %p A355561 a:= n-> b(n$2, infinity): %p A355561 seq(a(n), n=0..6); %p A355561 # second Maple program: %p A355561 b:= proc(n, k) option remember; `if`(n=0, 1, -add( %p A355561 b(j, k)*(-1)^(n-j)*binomial(k^j, n-j), j=0..n-1)) %p A355561 end: %p A355561 a:= n-> b(n$2): %p A355561 seq(a(n), n=0..12); %Y A355561 Main diagonal of A355576. %Y A355561 Cf. A076113, A090588, A107354, A355519. %K A355561 nonn %O A355561 0,3 %A A355561 _Alois P. Heinz_, Jul 06 2022