This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A355579 #10 Jul 09 2022 15:29:03 %S A355579 1,2,4,6,12,24,36,48,72,144,288,432,864,1728,2592,3456,5184,10368, %T A355579 20736,31104,41472,62208,124416,248832,373248,746496,1492992,2239488, %U A355579 2985984,4478976,8957952,17915904,26873856,53747712,107495424,161243136,214990848,322486272 %N A355579 Numbers k such that A072079(k)/k sets a new record. %C A355579 Numbers m such that A072079(m)/m > A072079(k)/k for all k < m. %C A355579 All the terms are 3-smooth numbers (A003586). %C A355579 Equivalently, 3-smooth numbers k such that A000203(k)/k sets a new record. %C A355579 Analogous to superabundant numbers (A004394) with 3-smooth numbers only. %H A355579 Michael S. Branicky, <a href="/A355579/b355579.txt">Table of n, a(n) for n = 1..4370</a> %F A355579 Limit_{n->oo} A072079(a(n))/a(n) = lim_{n->oo} A000203(a(n))/a(n) = 3. %e A355579 The numbers of 3-smooth divisors of the first 6 positive integers are 1, 3, 4, 7, 1 and 12. The corresponding values of A072079(k)/k are 1, 3/2, 4/3, 7/4, 1/5 and 2. The record values, 1, 3/2, 7/4 and 2, occur at 1, 2, 4 and 6, the first 4 terms of this sequence. %t A355579 s[n_] := Module[{e = IntegerExponent[n, {2, 3}], p}, p = {2, 3}^e; If[Times @@ p == n, (2^(e[[1]] + 1) - 1)*(3^(e[[2]] + 1) - 1)/(2*n), 0]]; sm = 0; seq = {}; Do[sn = s[n]; If[sn > sm, sm = sn; AppendTo[seq, n]], {n, 1, 10^6}]; seq %o A355579 (PARI) lista(nmax) = {my(list = List(), rmax = 0, e2, e3, r); for(n = 1, nmax, e2 = valuation(n, 2); e3 = valuation(n, 3); r = if(2^e2 * 3^e3 == n, (2^(e2 + 1) - 1)*(3^(e3 + 1) - 1)/(2*n), 0); if(r > rmax, rmax = r; listput(list, n))); Vec(list)}; %o A355579 (Python) %o A355579 from fractions import Fraction %o A355579 from sympy import multiplicity as v %o A355579 from itertools import count, takewhile %o A355579 def f(n): return Fraction((2**(v(2, n)+1)-1) * (3**(v(3, n)+1)-1)//2, n) %o A355579 def smooth3(lim): %o A355579 pows2 = list(takewhile(lambda x: x<lim, (2**i for i in count(0)))) %o A355579 pows3 = list(takewhile(lambda x: x<lim, (3**i for i in count(0)))) %o A355579 return sorted(c*d for c in pows2 for d in pows3 if c*d <= lim) %o A355579 def aupto(lim): %o A355579 data, records, record = smooth3(lim), [], -1 %o A355579 for argv, v in zip(data, map(f, data)): %o A355579 if v > record: record = v; records.append(argv) %o A355579 return records %o A355579 print(aupto(10**9)) # _Michael S. Branicky_, Jul 08 2022 %Y A355579 Subsequence of A003586 and A355578. %Y A355579 Cf. A000203, A004394, A072079. %K A355579 nonn %O A355579 1,2 %A A355579 _Amiram Eldar_, Jul 08 2022