cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A355584 a(n) is the sum of the 5-smooth divisors of n.

Original entry on oeis.org

1, 3, 4, 7, 6, 12, 1, 15, 13, 18, 1, 28, 1, 3, 24, 31, 1, 39, 1, 42, 4, 3, 1, 60, 31, 3, 40, 7, 1, 72, 1, 63, 4, 3, 6, 91, 1, 3, 4, 90, 1, 12, 1, 7, 78, 3, 1, 124, 1, 93, 4, 7, 1, 120, 6, 15, 4, 3, 1, 168, 1, 3, 13, 127, 6, 12, 1, 7, 4, 18, 1, 195, 1, 3, 124, 7
Offset: 1

Views

Author

Amiram Eldar, Jul 08 2022

Keywords

Crossrefs

Sum of the p-smooth divisors of n: A038712 (2), A072079 (3), this sequence (5).

Programs

  • Mathematica
    a[n_] := (Times @@ ({2, 3, 5}^(IntegerExponent[n, {2, 3, 5}] + 1) - 1))/8; Array[a, 100]
  • PARI
    a(n) = (2^(valuation(n, 2) + 1) - 1) * (3^(valuation(n, 3) + 1) - 1) * (5^(valuation(n, 5) + 1) - 1) / 8;
    
  • Python
    from sympy import multiplicity as v
    def a(n): return (2**(v(2, n)+1)-1) * (3**(v(3, n)+1)-1) * (5**(v(5, n)+1)-1) // 8
    print([a(n) for n in range(1, 77)]) # Michael S. Branicky, Jul 08 2022

Formula

Multiplicative with a(p^e) = (p^(e+1)-1)/(p-1) if p <= 5, and 1 otherwise.
a(n) = (2^(A007814(n)+1)-1)*(3^(A007949(n)+1)-1)*(5^(A112765(n)+1)-1)/8.
a(n) = A000203(A355582(n)).
a(n) <= A000203(n), with equality if and only if n is in A051037.
Dirichlet g.f.: zeta(s)*(2^s/(2^s-2))*(3^s/(3^s-3))*(5^s/(5^s-5)). - Amiram Eldar, Dec 25 2022