A355584 a(n) is the sum of the 5-smooth divisors of n.
1, 3, 4, 7, 6, 12, 1, 15, 13, 18, 1, 28, 1, 3, 24, 31, 1, 39, 1, 42, 4, 3, 1, 60, 31, 3, 40, 7, 1, 72, 1, 63, 4, 3, 6, 91, 1, 3, 4, 90, 1, 12, 1, 7, 78, 3, 1, 124, 1, 93, 4, 7, 1, 120, 6, 15, 4, 3, 1, 168, 1, 3, 13, 127, 6, 12, 1, 7, 4, 18, 1, 195, 1, 3, 124, 7
Offset: 1
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
a[n_] := (Times @@ ({2, 3, 5}^(IntegerExponent[n, {2, 3, 5}] + 1) - 1))/8; Array[a, 100]
-
PARI
a(n) = (2^(valuation(n, 2) + 1) - 1) * (3^(valuation(n, 3) + 1) - 1) * (5^(valuation(n, 5) + 1) - 1) / 8;
-
Python
from sympy import multiplicity as v def a(n): return (2**(v(2, n)+1)-1) * (3**(v(3, n)+1)-1) * (5**(v(5, n)+1)-1) // 8 print([a(n) for n in range(1, 77)]) # Michael S. Branicky, Jul 08 2022
Formula
Multiplicative with a(p^e) = (p^(e+1)-1)/(p-1) if p <= 5, and 1 otherwise.
Dirichlet g.f.: zeta(s)*(2^s/(2^s-2))*(3^s/(3^s-3))*(5^s/(5^s-5)). - Amiram Eldar, Dec 25 2022