cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A355593 a(n) is the number of alternating integers that divide n.

This page as a plain text file.
%I A355593 #42 Jan 06 2024 09:21:33
%S A355593 1,2,2,3,2,4,2,4,3,4,1,6,1,4,3,5,1,6,1,5,4,2,2,7,3,2,4,5,2,7,1,6,2,3,
%T A355593 3,9,1,3,2,6,2,7,2,3,5,3,2,8,3,6,2,4,1,8,2,7,2,4,1,9,2,2,6,6,3,4,2,4,
%U A355593 4,7,1,11,1,3,4,5,2,5,1,7,5,3,2,9,3,3,4,4,2,11,2,5,2,4,2,10,1,6,3,7
%N A355593 a(n) is the number of alternating integers that divide n.
%C A355593 This sequence first differs from A355302 at index 13, where a(13) = 1 while A355302(13) = 2.
%C A355593 This sequence first differs from A332268 at index 14, where a(14) = 4 while A332268(14) = 3.
%H A355593 Robert Israel, <a href="/A355593/b355593.txt">Table of n, a(n) for n = 1..10000</a>
%F A355593 Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Sum_{n>=2} 1/A030141(n) = 5.1... (the sums up to 10^10, 10^11 and 10^12 are 5.1704..., 5.1727... and 5.1738..., respectively). - _Amiram Eldar_, Jan 06 2024
%e A355593 40 has 8 divisors: {1, 2, 4, 5, 8, 10, 20, 40} of which 2 are not alternating integers: {20, 40}, hence a(40) = 8 - 2 = 6.
%p A355593 Alt:= [$1..9, seq(seq(10*i+r - (i mod 2), r=[1,3,5,7,9]),i=1..9)]:
%p A355593 V:= Vector(100):
%p A355593 for t in Alt do J:= [seq(i,i=t..100,t)]; V[J]:= V[J] +~ 1 od:
%p A355593 convert(V,list); # _Robert Israel_, Nov 26 2023
%t A355593 q[n_] := !MemberQ[Differences[Mod[IntegerDigits[n], 2]], 0]; a[n_] := DivisorSum[n, 1 &, q[#] &]; Array[a, 120] (* _Amiram Eldar_, Jul 08 2022 *)
%o A355593 (Python)
%o A355593 from sympy import divisors
%o A355593 def p(d): return 0 if d in "02468" else 1
%o A355593 def c(n):
%o A355593     if n < 10: return True
%o A355593     s = str(n)
%o A355593     return all(p(s[i]) != p(s[i+1]) for i in range(len(s)-1))
%o A355593 def a(n): return sum(1 for d in divisors(n, generator=True) if c(d))
%o A355593 print([a(n) for n in range(1, 101)]) # _Michael S. Branicky_, Jul 08 2022
%o A355593 (PARI) alternate(n,d=digits(n))=for(i=2,#d, if((d[i]-d[i-1])%2==0, return(0))); 1
%o A355593 a(n)=sumdiv(n,d,alternate(d)) \\ _Charles R Greathouse IV_, Jul 08 2022
%Y A355593 Cf. A030141 (alternating integers), A355594, A355595, A355596.
%Y A355593 Similar to A332268 (with Niven numbers) and A355302 (with undulating integers).
%K A355593 nonn,base
%O A355593 1,2
%A A355593 _Bernard Schott_, Jul 08 2022