This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A355596 #16 Jul 14 2022 12:08:35 %S A355596 1,2,3,4,5,6,7,8,9,10,12,14,16,18,21,23,25,27,29,32,36,41,43,47,49,50, %T A355596 54,58,61,63,67,69,81,83,87,89,94,98,101,103,107,109,123,125,127,129, %U A355596 141,145,147,149,161,163,167,181,183,189,214,218,250,254,290,298 %N A355596 Numbers all of whose divisors are alternating numbers (A030141). %C A355596 The smallest alternating number that is not a term is 30, because of 15. %e A355596 32 is a term since all the divisors of 32, i.e., 1, 2, 4, 8, 16 and 32, are alternating numbers %t A355596 q[n_] := AllTrue[Divisors[n], !MemberQ[Differences[Mod[IntegerDigits[#], 2]], 0] &]; Select[Range[300], q] (* _Amiram Eldar_, Jul 12 2022 *) %o A355596 (Python) %o A355596 from sympy import divisors %o A355596 def p(d): return 0 if d in "02468" else 1 %o A355596 def c(n): %o A355596 if n < 10: return True %o A355596 s = str(n) %o A355596 return all(p(s[i]) != p(s[i+1]) for i in range(len(s)-1)) %o A355596 def ok(n): %o A355596 return c(n) and all(c(d) for d in divisors(n, generator=True)) %o A355596 print([k for k in range(1, 200) if ok(k)]) # _Michael S. Branicky_, Jul 12 2022 %o A355596 (PARI) isokd(n, d=digits(n))=for(i=2, #d, if((d[i]-d[i-1])%2==0, return(0))); 1; \\ A030141 %o A355596 isok(m) = sumdiv(m, d, isokd(d)) == numdiv(m); \\ _Michel Marcus_, Jul 12 2022 %Y A355596 Subsequence of A030141. %Y A355596 Cf. A355593, A355594, A355595. %Y A355596 Similar sequences: A062687, A190217, A329419, A337941. %K A355596 nonn,base %O A355596 1,2 %A A355596 _Bernard Schott_, Jul 12 2022 %E A355596 a(51) and beyond from _Michael S. Branicky_, Jul 12 2022