A355604 Table T(n, k), n >= 0, k = 0..n, read by rows; row n is obtained by replacing in row n of Pascal's triangle (A007318) runs of k consecutive even numbers by the terms of row k+1 of the present triangle.
1, 1, 1, 1, 1, 1, 1, 3, 3, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 5, 1, 1, 1, 15, 1, 15, 1, 1, 1, 7, 21, 35, 35, 21, 7, 1, 1, 1, 1, 15, 1, 15, 1, 1, 1, 1, 9, 1, 5, 1, 1, 5, 1, 9, 1, 1, 1, 45, 1, 1, 1, 1, 1, 45, 1, 1, 1, 11, 55, 165, 1, 3, 3, 1, 165, 55, 11, 1, 1, 1, 1, 1, 495, 1, 1, 1, 495, 1, 1, 1, 1
Offset: 0
Examples
Triangle T(n, k) begins (stars indicate replacements): n\k| 0 1 2 3 4 5 6 7 8 9 10 11 12 ---+----------------------------------------------------------------- 0| 1 1| 1 1 2| 1 1* 1 3| 1 3 3 1 4| 1 1* 1* 1* 1 5| 1 5 1* 1* 5 1 6| 1 1* 15 1* 15 1* 1 7| 1 7 21 35 35 21 7 1 8| 1 1* 1* 15* 1* 15* 1* 1* 1 9| 1 9 1* 5* 1* 1* 5* 1* 9 1 10| 1 1* 45 1* 1* 1* 1* 1* 45 1* 1 11| 1 11 55 165 1* 3* 3* 1* 165 55 11 1 12| 1 1* 1* 1* 495 1* 1* 1* 495 1* 1* 1* 1
Links
- Rémy Sigrist, Table of n, a(n) for n = 0..8384 (rows for n = 0..128 flattened)
- Rémy Sigrist, Colored representation of the first 2^10 rows (where the hue is function of T(n, k), black pixels correspond to 1's)
- Index entries for triangles and arrays related to Pascal's triangle
Programs
-
PARI
row(n) = { my (r=binomial(n)); for (i=1, #r, if (r[i]%2==0, for (w=1, oo, if (r[i+w]%2==1, my (t=row(w-1)); for (j=1, #t, r[i-1+j]=t[j]); i+=w; break)))); return (r) }
Comments