A355608 Zeroless numbers k such that x^2 - s*x + p has only integer roots, where s and p denote the sum and product of the digits of k respectively.
4, 11, 12, 13, 14, 15, 16, 17, 18, 19, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 48, 49, 51, 52, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 71, 72, 73, 74, 75, 76, 77, 78, 79, 81, 82, 83, 84, 85, 86, 87, 88, 89, 91, 92, 93, 94, 95, 96, 97, 98, 99, 122, 134, 143, 146
Offset: 1
Examples
k = 4 is a term, since 4 is zeroless, the sum of the digits of 4 is 4, the product of the digits of 4 is 4 and the root 2 of x^2 - 4x + 4 is an integer.
Links
- Jean-Marc Rebert, Table of n, a(n) for n = 1..3366
Programs
-
Maple
isA355608 := proc(n) local dgs,p,s ; dgs := convert(n,base,10) ; p := mul(d,d=dgs) ; s := add(d,d=dgs) ; if p <> 0 then -s/2+sqrt(s^2/4-p) ; if type(simplify(%),integer) then -s/2-sqrt(s^2/4-p) ; if type(simplify(%),integer) then true ; else false ; end if; else false ; end if; else false ; end if ; end proc: for n from 1 to 180 do if isA355608(n) then printf("%d,",n) ; end if; end do: # R. J. Mathar, Jan 24 2023
-
PARI
is(n)=my(v=digits(n), c=vecprod(v)); c&& issquare(vecsum(v)^2-4*c)
Comments