cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A355620 a(n) is the sum of the divisors of n whose decimal expansions appear as substrings in the decimal expansion of n.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 15, 14, 15, 21, 17, 18, 19, 20, 22, 22, 24, 23, 30, 30, 28, 27, 30, 29, 33, 32, 34, 36, 34, 40, 45, 37, 38, 42, 44, 42, 44, 43, 48, 50, 46, 47, 60, 49, 55, 52, 54, 53, 54, 60, 56, 57, 58, 59, 66, 62, 64, 66, 68, 70, 72, 67
Offset: 1

Views

Author

Rémy Sigrist, Jul 10 2022

Keywords

Examples

			For n = 110:
- the divisors of 110 are: 1, 2, 5, 10, 11, 22, 55, 110,
- 1, 10, 11 and 110 appear as substrings in 110,
- so a(110) = 1 + 10 + 11 + 110 = 132.
		

Crossrefs

Cf. A000203, A002275, A121041, A121042, A239058, A355633 (binary analog).

Programs

  • Mathematica
    Table[DivisorSum[n, # &, StringContainsQ[IntegerString[n], IntegerString[#]] &], {n, 100}] (* Paolo Xausa, Jul 23 2024 *)
  • PARI
    a(n, base=10) = { my (d=digits(n, base), s=setbinop((i,j) -> fromdigits(d[i..j], base), [1..#d]), v=0); for (k=1, #s, if (s[k] && n%s[k]==0, v+=s[k])); return (v) }
    
  • Python
    from sympy import divisors
    def a(n):
        s = str(n)
        return sum(d for d in divisors(n, generator=True) if str(d) in s)
    print([a(n) for n in range(1, 68)]) # Michael S. Branicky, Jul 10 2022

Formula

a(n) >= n.
a(n) <= A000203(n) with equality iff n belongs to A239058.
a(10^n) = A002275(n+1) for any n >= 0.