A355620 a(n) is the sum of the divisors of n whose decimal expansions appear as substrings in the decimal expansion of n.
1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 15, 14, 15, 21, 17, 18, 19, 20, 22, 22, 24, 23, 30, 30, 28, 27, 30, 29, 33, 32, 34, 36, 34, 40, 45, 37, 38, 42, 44, 42, 44, 43, 48, 50, 46, 47, 60, 49, 55, 52, 54, 53, 54, 60, 56, 57, 58, 59, 66, 62, 64, 66, 68, 70, 72, 67
Offset: 1
Examples
For n = 110: - the divisors of 110 are: 1, 2, 5, 10, 11, 22, 55, 110, - 1, 10, 11 and 110 appear as substrings in 110, - so a(110) = 1 + 10 + 11 + 110 = 132.
Links
- Rémy Sigrist, Table of n, a(n) for n = 1..10000
- Rémy Sigrist, Scatterplot of the first 100000 terms (red pixels indicate when n is a multiple of 10)
- Index entries for sequences related to decimal expansion of n
- Index entries for sequences related to divisors
Programs
-
Mathematica
Table[DivisorSum[n, # &, StringContainsQ[IntegerString[n], IntegerString[#]] &], {n, 100}] (* Paolo Xausa, Jul 23 2024 *)
-
PARI
a(n, base=10) = { my (d=digits(n, base), s=setbinop((i,j) -> fromdigits(d[i..j], base), [1..#d]), v=0); for (k=1, #s, if (s[k] && n%s[k]==0, v+=s[k])); return (v) }
-
Python
from sympy import divisors def a(n): s = str(n) return sum(d for d in divisors(n, generator=True) if str(d) in s) print([a(n) for n in range(1, 68)]) # Michael S. Branicky, Jul 10 2022