This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A355632 #15 Jul 23 2024 13:35:35 %S A355632 1,2,3,4,5,6,7,8,9,1,10,1,11,1,2,12,1,13,1,14,1,5,15,1,16,1,17,1,18,1, %T A355632 19,2,20,1,21,2,22,23,2,4,24,5,25,2,26,27,2,28,29,3,30,1,31,2,32,3,33, %U A355632 34,5,35,3,6,36,37,38,3,39,4,40,1,41,2,42,43,4,44 %N A355632 Irregular triangle T(n, k), n > 0, k = 1..A121041(n), read by rows; the n-th row contains in ascending order the divisors of n whose decimal expansions appear as substrings in the decimal expansion of n. %H A355632 Paolo Xausa, <a href="/A355632/b355632.txt">Table of n, a(n) for n = 1..12288</a> (rows 1..5000 of the triangle, flattened). %H A355632 <a href="/index/De#decimal_expansion">Index entries for sequences related to decimal expansion of n</a> %H A355632 <a href="/index/Di#divisors">Index entries for sequences related to divisors</a> %F A355632 T(n, 1) = A121042(n). %F A355632 T(n, A121041(n)) = n. %F A355632 Sum_{k = 1..A121041(n)} T(n, k) = A355620(n). %e A355632 Triangle T(n, k) begins: %e A355632 1: [1] %e A355632 2: [2] %e A355632 3: [3] %e A355632 4: [4] %e A355632 5: [5] %e A355632 6: [6] %e A355632 7: [7] %e A355632 8: [8] %e A355632 9: [9] %e A355632 10: [1, 10] %e A355632 11: [1, 11] %e A355632 12: [1, 2, 12] %e A355632 13: [1, 13] %e A355632 14: [1, 14] %e A355632 15: [1, 5, 15] %e A355632 16: [1, 16] %t A355632 Table[Select[Divisors[n], StringContainsQ[IntegerString[n], IntegerString[#]] &], {n, 50}] (* _Paolo Xausa_, Jul 23 2024 *) %o A355632 (PARI) row(n, base=10) = { my (d=digits(n, base), s=setbinop((i,j) -> fromdigits(d[i..j], base), [1..#d]), v=0); select(v -> v && n%v==0, s) } %o A355632 (Python) %o A355632 from sympy import divisors %o A355632 def row(n): %o A355632 s = str(n) %o A355632 return sorted(d for d in divisors(n, generator=True) if str(d) in s) %o A355632 def table(r): return [i for n in range(1, r+1) for i in row(n)] %o A355632 print(table(44)) # _Michael S. Branicky_, Jul 11 2022 %Y A355632 Cf. A027750, A121041 (row lengths), A121042, A355620 (row sums), A355634 (binary analog). %K A355632 nonn,base,tabf %O A355632 1,2 %A A355632 _Rémy Sigrist_, Jul 11 2022