This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A355633 #17 Jul 16 2022 07:18:04 %S A355633 1,3,4,7,6,12,8,15,10,18,12,28,14,24,19,31,18,30,20,42,22,36,24,60,26, %T A355633 42,31,56,30,57,32,63,34,54,36,70,38,60,43,90,42,66,44,84,54,72,48, %U A355633 124,50,78,55,98,54,93,72,120,61,90,60,133,62,96,74,127,66 %N A355633 a(n) is the sum of the divisors of n whose binary expansions appear as substrings in the binary expansion of n. %H A355633 Rémy Sigrist, <a href="/A355633/b355633.txt">Table of n, a(n) for n = 1..10000</a> %H A355633 Rémy Sigrist, <a href="/A355633/a355633.png">Colored scatterplot of the first 100000 terms</a> (the color is function of the 2-adic valuation of n) %H A355633 <a href="/index/Bi#binary">Index entries for sequences related to binary expansion of n</a> %H A355633 <a href="/index/Di#divisors">Index entries for sequences related to divisors</a> %F A355633 a(n) <= A000203(n). %F A355633 a(2^n) = 2^(n+1) - 1 for any n >= 0. %e A355633 For n = 84: %e A355633 - the binary expansion of 84 is "1010100", %e A355633 - we have the following divisors: %e A355633 d bin(d) in bin(84)? %e A355633 -- ------- ----------- %e A355633 1 1 Yes %e A355633 2 10 Yes %e A355633 3 11 No %e A355633 4 100 Yes %e A355633 6 110 No %e A355633 7 111 No %e A355633 12 1100 No %e A355633 14 1110 No %e A355633 21 10101 Yes %e A355633 28 11100 No %e A355633 42 101010 Yes %e A355633 84 1010100 Yes %e A355633 - so a(84) = 1 + 2 + 4 + 21 + 42 + 84 = 154. %t A355633 a[n_] := DivisorSum[n, # &, StringContainsQ @@ IntegerString[{n, #}, 2] &]; Array[a, 100] (* _Amiram Eldar_, Jul 16 2022 *) %o A355633 (PARI) a(n, base=2) = { my (d=digits(n, base), s=setbinop((i, j) -> fromdigits(d[i..j], base), [1..#d]), v=0); for (k=1, #s, if (s[k] && n%s[k]==0, v+=s[k])); return (v) } %o A355633 (Python) %o A355633 from sympy import divisors %o A355633 def a(n): %o A355633 s = bin(n)[2:] %o A355633 return sum(d for d in divisors(n, generator=True) if bin(d)[2:] in s) %o A355633 print([a(n) for n in range(1, 66)]) # _Michael S. Branicky_, Jul 11 2022 %Y A355633 Cf. A000203, A027750, A093640, A355620 (decimal analog), A355634. %K A355633 nonn,base %O A355633 1,2 %A A355633 _Rémy Sigrist_, Jul 11 2022