This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A355634 #9 Jul 23 2024 08:17:14 %S A355634 1,1,2,1,3,1,2,4,1,5,1,2,3,6,1,7,1,2,4,8,1,9,1,2,5,10,1,11,1,2,3,4,6, %T A355634 12,1,13,1,2,7,14,1,3,15,1,2,4,8,16,1,17,1,2,9,18,1,19,1,2,4,5,10,20, %U A355634 1,21,1,2,11,22,1,23,1,2,3,4,6,8,12,24,1,25 %N A355634 Irregular triangle T(n, k), n > 0, k = 1..A093640(n), read by rows; the n-th row contains in ascending order the divisors of n whose binary expansions appear as substrings in the binary expansion of n. %H A355634 Paolo Xausa, <a href="/A355634/b355634.txt">Table of n, a(n) for n = 1..10019</a> (rows 1..2000 of the triangle, flattened). %H A355634 <a href="/index/Bi#binary">Index entries for sequences related to binary expansion of n</a> %H A355634 <a href="/index/Di#divisors">Index entries for sequences related to divisors</a> %F A355634 T(n, 1) = 1. %F A355634 T(n, A093640(n)) = n. %F A355634 Sum_{k = 1..A093640(n)} T(n, k) = A355633(n). %e A355634 Triangle T(n, k) begins: %e A355634 1: [1] %e A355634 2: [1, 2] %e A355634 3: [1, 3] %e A355634 4: [1, 2, 4] %e A355634 5: [1, 5] %e A355634 6: [1, 2, 3, 6] %e A355634 7: [1, 7] %e A355634 8: [1, 2, 4, 8] %e A355634 9: [1, 9] %e A355634 10: [1, 2, 5, 10] %e A355634 11: [1, 11] %e A355634 12: [1, 2, 3, 4, 6, 12] %e A355634 13: [1, 13] %e A355634 14: [1, 2, 7, 14] %e A355634 15: [1, 3, 15] %e A355634 16: [1, 2, 4, 8, 16] %t A355634 Table[Select[Divisors[n], StringContainsQ[IntegerString[n, 2], IntegerString[#, 2]] &], {n, 50}] (* _Paolo Xausa_, Jul 23 2024 *) %o A355634 (PARI) row(n, base=2) = { my (d=digits(n, base), s=setbinop((i, j) -> fromdigits(d[i..j], base), [1..#d]), v=0); select(v -> v && n%v==0, s) } %o A355634 (Python) %o A355634 from sympy import divisors %o A355634 def row(n): %o A355634 s = bin(n)[2:] %o A355634 return sorted(d for d in divisors(n, generator=True) if bin(d)[2:] in s) %o A355634 def table(r): return [i for n in range(1, r+1) for i in row(n)] %o A355634 print(table(25)) # _Michael S. Branicky_, Jul 11 2022 %Y A355634 Cf. A027750, A093640 (row lengths), A355632 (decimal analog), A355633 (row sums). %K A355634 nonn,base,tabf %O A355634 1,3 %A A355634 _Rémy Sigrist_, Jul 11 2022