This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A355635 #14 Jul 26 2022 13:42:14 %S A355635 1,1,-1,1,-2,1,1,-4,5,-2,1,-8,22,-24,9,1,-16,93,-238,256,-96,1,-32, %T A355635 386,-2180,5825,-6500,2500,1,-64,1586,-19184,117561,-345600,407700, %U A355635 -162000,1,-128,6476,-164864,2229206,-15585920,51583084,-64538880,26471025 %N A355635 Triangle read by rows. Row n gives the coefficients of Product_{k=0..n-1} (x - binomial(n-1,k)) expanded in decreasing powers of x, with row 0 = {1}. %C A355635 Without signs the triangle of elementary symmetric functions of the terms binomial(n,j), j=0..n. %F A355635 T(n, 0) = 1. %F A355635 T(n, 1) = -2^(n-1), for n > 0. %F A355635 T(n, 2) = A000346(n-2), for n > 1. %F A355635 T(n, 3) = -A025131(n-1), for n > 1. %F A355635 T(n, 4) = A025133(n-1), for n > 1. %F A355635 T(n, n) = (-1)^n*A001142(n-1), for n > 0. %F A355635 T(n+1, n) = (-1)^n*A025134(n). %F A355635 T(n+2, n) = (-1)^n*A025135(n). %e A355635 The triangle begins: %e A355635 1; %e A355635 1, -1; %e A355635 1, -2, 1; %e A355635 1, -4, 5, -2; %e A355635 1, -8, 22, -24, 9; %e A355635 1, -16, 93, -238, 256, -96; %e A355635 1, -32, 386, -2180, 5825, -6500, 2500; %e A355635 ... %e A355635 Row 4: x^4 - 8*x^3 + 22*x^2 - 24*x + 9 = (x-1)*(x-4)*(x-6)*(x-4)*(x-1). %o A355635 (PARI) T(n, k) = polcoeff(prod(m=0, n, (x-binomial(n-1, m))), n-k+1); %Y A355635 Cf. A000079, A000346, A025131, A025133, A025134, A025135. %Y A355635 Cf. A001142 (right diagonal unsigned). %K A355635 sign,tabl %O A355635 0,5 %A A355635 _Thomas Scheuerle_, Jul 11 2022