This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A355638 #8 Jul 11 2022 16:04:32 %S A355638 1,0,1,1,1,1,2,2,4,5,7,10,16,27,42,67,116,187,329,570,970,1723,3021, %T A355638 5338,9563,16981,30517,54913,98847,179119,324333,589059,1072997, %U A355638 1955207,3573129,6538088 %N A355638 Number of polyhedra (3-polytopes) of graph radius 1 on n edges. %C A355638 Data was gathered with the help of Scientific IT & Application Support (SCITAS) High Performance Computing (HPC) for the EPFL community. %H A355638 R. W. Maffucci, <a href="https://arxiv.org/abs/2207.02040">On unigraphic 3-polytopes of radius one</a>, arXiv:2207.02040 [math.CO], 2022. %e A355638 For n=6 there is only the tetrahedron, n=8 the square pyramid, n=9 the triangular bipyramid,... %t A355638 Needs["IGraphM`"] %t A355638 ra[8]:={Square pyramid} %t A355638 ra[q]=opb[ra[q-1]] %t A355638 opb[setg_] := %t A355638 Prepend[DeleteDuplicatesBy[ %t A355638 Flatten[Table[ %t A355638 EdgeAdd[g, UndirectedEdge[x[[1]], x[[2]]], %t A355638 GraphLayout -> "TutteEmbedding"], {g, setg}, {x, %t A355638 Flatten[Table[ %t A355638 Complement[Subsets[i, {2}], %t A355638 Table[{i[[j]], i[[j + 1]]}, {j, Length[i] - 1}], {{i[[1]], %t A355638 i[[-1]]}}], {i, Select[IGFaces[g], Length[#] > 3 &]}], %t A355638 1]}]], CanonicalGraph], %t A355638 If[OddQ[EdgeCount[setg[[1]]]], %t A355638 WheelGraph[EdgeCount[setg[[1]]]/2 + 3/2, %t A355638 GraphLayout -> "TutteEmbedding", ImageSize -> 25], Nothing]] %Y A355638 Cf. A002840. %K A355638 nonn,more %O A355638 6,7 %A A355638 _Riccardo Maffucci_, Jul 11 2022