cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A355654 For any number n with runs in binary expansion (r_w, ..., r_0), let p(n) be the polynomial of a single indeterminate x where the coefficient of x^e is r_e for e = 0..w and otherwise 0, and let q be the inverse of p; a(n) = q(p(n)^2).

Original entry on oeis.org

0, 1, 9, 15, 271, 313, 481, 511, 33279, 34785, 39993, 40719, 61455, 61689, 65409, 65535, 16842751, 17039233, 17809657, 17821711, 20455183, 20479033, 20842465, 20939263, 31457791, 31465441, 31584313, 31588111, 33488911, 33489913, 33553921, 33554431, 34393292799
Offset: 0

Views

Author

Rémy Sigrist, Jul 12 2022

Keywords

Comments

In other words, a(n) encodes the square of the polynomial encoded by n.

Examples

			The first terms, alongside their binary expansions and corresponding polynomials, are:
  n  a(n)   bin(n)  bin(a(n))         p(n)           p(a(n))
  -  -----  ------  ----------------  -------------  -----------------------------
  0      0       0                 0              0                              0
  1      1       1                 1              1                              1
  2      9      10              1001          x + 1                  x^2 + 2*x + 1
  3     15      11              1111              2                              4
  4    271     100         100001111          x + 2                  x^2 + 4*x + 4
  5    313     101         100111001    x^2 + x + 1  x^4 + 2*x^3 + 3*x^2 + 2*x + 1
  6    481     110         111100001        2*x + 1                4*x^2 + 4*x + 1
  7    511     111         111111111              3                              9
  8  33279    1000  1000000111111111          x + 3                  x^2 + 6*x + 9
  9  34785    1001  1000011111100001  x^2 + 2*x + 1  x^4 + 4*x^3 + 6*x^2 + 4*x + 1
		

Crossrefs

Programs

  • PARI
    toruns(n) = { my (r=[]); while (n, my (v=valuation(n+n%2, 2)); n\=2^v; r=concat(v, r)); r }
    fromruns(r) = { my (v=0); for (k=1, #r, v=(v+k%2)*2^r[k]-k%2); v }
    a(n) = { fromruns(Vec(Pol(toruns(n))^2)) }

Formula

A005811(a(n)) = 2*A005811(n) - 1 for any n > 0.
a(2^n - 1) = 2^(n^2) - 1.