This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A355662 #12 Sep 08 2022 08:14:21 %S A355662 0,1,1,2,1,1,1,3,1,1,1,1,1,2,1,4,1,1,1,1,1,1,1,1,1,1,1,2,1,1,1,5,1,1, %T A355662 1,1,1,2,1,1,1,1,1,1,1,1,1,1,2,1,1,1,1,1,1,2,1,1,1,1,1,1,1,6,1,1,1,1, %U A355662 1,1,1,1,1,1,1,3,1,1,1,1,1,1,1,1,1,2,1 %N A355662 Smallest number of children of any vertex which has children, in the rooted tree with Matula-Goebel number n. %C A355662 Record highs are at a(2^k) = k which is a root with k singleton children. %C A355662 If n is prime then the root has a single child so that a(n) = 1. %H A355662 <a href="/index/Mat#matula">Index entries for sequences related to Matula-Goebel numbers</a> %F A355662 a(n) = min(bigomega(n), {a(primepi(p)) | p odd prime factor of n}). %F A355662 a(n) = Min_{s>=2 in row n of A354322} bigomega(s). %e A355662 For n=31972, the tree is as follows and vertex 1007 has 2 children which is the least among the vertices which have children, so a(31972) = 2. %e A355662 31972 root %e A355662 / | \ %e A355662 1 1 1007 Tree n=31972 and its %e A355662 / \ subtree numbers. %e A355662 8 16 %e A355662 /|\ // \\ %e A355662 1 1 1 1 1 1 1 %p A355662 a:= proc(n) option remember; uses numtheory; %p A355662 min(bigomega(n), map(p-> a(pi(p)), factorset(n) minus {2})[]) %p A355662 end: %p A355662 seq(a(n), n=1..100); # _Alois P. Heinz_, Jul 15 2022 %t A355662 a[n_] := a[n] = Min[Join[{PrimeOmega[n]}, a /@ PrimePi @ Select[ FactorInteger[n][[All, 1]], #>2&]]]; %t A355662 Table[a[n], {n, 1, 100}] (* _Jean-François Alcover_, Sep 08 2022 *) %o A355662 (PARI) a(n) = my(f=factor(n)); vecmin(concat(vecsum(f[,2]), [self()(primepi(p)) |p<-f[,1], p!=2])); %Y A355662 Cf. A000720, A001222 (bigomega), A354322 (distinct subtrees). %Y A355662 Cf. A291636 (indices of !=1). %Y A355662 Cf. A355661 (maximum children). %K A355662 nonn %O A355662 1,4 %A A355662 _Kevin Ryde_, Jul 15 2022