cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A355662 Smallest number of children of any vertex which has children, in the rooted tree with Matula-Goebel number n.

This page as a plain text file.
%I A355662 #12 Sep 08 2022 08:14:21
%S A355662 0,1,1,2,1,1,1,3,1,1,1,1,1,2,1,4,1,1,1,1,1,1,1,1,1,1,1,2,1,1,1,5,1,1,
%T A355662 1,1,1,2,1,1,1,1,1,1,1,1,1,1,2,1,1,1,1,1,1,2,1,1,1,1,1,1,1,6,1,1,1,1,
%U A355662 1,1,1,1,1,1,1,3,1,1,1,1,1,1,1,1,1,2,1
%N A355662 Smallest number of children of any vertex which has children, in the rooted tree with Matula-Goebel number n.
%C A355662 Record highs are at a(2^k) = k which is a root with k singleton children.
%C A355662 If n is prime then the root has a single child so that a(n) = 1.
%H A355662 <a href="/index/Mat#matula">Index entries for sequences related to Matula-Goebel numbers</a>
%F A355662 a(n) = min(bigomega(n), {a(primepi(p)) | p odd prime factor of n}).
%F A355662 a(n) = Min_{s>=2 in row n of A354322} bigomega(s).
%e A355662 For n=31972, the tree is as follows and vertex 1007 has 2 children which is the least among the vertices which have children, so a(31972) = 2.
%e A355662     31972  root
%e A355662    / |  \
%e A355662   1  1  1007      Tree n=31972 and its
%e A355662        /    \     subtree numbers.
%e A355662       8      16
%e A355662      /|\    // \\
%e A355662     1 1 1  1 1 1 1
%p A355662 a:= proc(n) option remember; uses numtheory;
%p A355662       min(bigomega(n), map(p-> a(pi(p)), factorset(n) minus {2})[])
%p A355662     end:
%p A355662 seq(a(n), n=1..100);  # _Alois P. Heinz_, Jul 15 2022
%t A355662 a[n_] := a[n] = Min[Join[{PrimeOmega[n]}, a /@ PrimePi @ Select[ FactorInteger[n][[All, 1]], #>2&]]];
%t A355662 Table[a[n], {n, 1, 100}] (* _Jean-François Alcover_, Sep 08 2022 *)
%o A355662 (PARI) a(n) = my(f=factor(n)); vecmin(concat(vecsum(f[,2]), [self()(primepi(p)) |p<-f[,1], p!=2]));
%Y A355662 Cf. A000720, A001222 (bigomega), A354322 (distinct subtrees).
%Y A355662 Cf. A291636 (indices of !=1).
%Y A355662 Cf. A355661 (maximum children).
%K A355662 nonn
%O A355662 1,4
%A A355662 _Kevin Ryde_, Jul 15 2022