cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A355663 Square array A(n, k), n, k >= 0, read by antidiagonals; for any number n with runs in binary expansion (r_w, ..., r_0), let p(n) be the polynomial of a single indeterminate x where the coefficient of x^e is r_e for e = 0..w and otherwise 0, and let q be the inverse of p; A(n, k) = q(p(n) + p(k)).

This page as a plain text file.
%I A355663 #5 Jul 14 2022 09:35:21
%S A355663 0,1,1,2,3,2,3,4,4,3,4,7,12,7,4,5,8,8,8,8,5,6,11,24,15,24,11,6,7,12,
%T A355663 19,16,16,19,12,7,8,15,28,23,48,23,28,15,8,9,16,16,24,39,39,24,16,16,
%U A355663 9,10,19,48,31,56,51,56,31,48,19,10,11,20,35,32,32,35,35,32,32,35,20,11
%N A355663 Square array A(n, k), n, k >= 0, read by antidiagonals; for any number n with runs in binary expansion (r_w, ..., r_0), let p(n) be the polynomial of a single indeterminate x where the coefficient of x^e is r_e for e = 0..w and otherwise 0, and let q be the inverse of p; A(n, k) = q(p(n) + p(k)).
%C A355663 In other words, A(n, k) encodes the sum of the polynomials encoded by n and k.
%H A355663 <a href="/index/Bi#binary">Index entries for sequences related to binary expansion of n</a>
%F A355663 A(n, k) = A(k, n).
%F A355663 A(n, 0) = n.
%F A355663 A(n, 1) = A014601(n) for any n > 0.
%F A355663 A(n, n) = A001196(n).
%e A355663 Array A(n, k) begins:
%e A355663   n\k|   0   1   2   3    4    5    6   7    8    9   10   11   12
%e A355663   ---+------------------------------------------------------------
%e A355663     0|   0   1   2   3    4    5    6   7    8    9   10   11   12
%e A355663     1|   1   3   4   7    8   11   12  15   16   19   20   23   24
%e A355663     2|   2   4  12   8   24   19   28  16   48   35   44   39   56
%e A355663     3|   3   7   8  15   16   23   24  31   32   39   40   47   48
%e A355663     4|   4   8  24  16   48   39   56  32   96   71   88   79  112
%e A355663     5|   5  11  19  23   39   51   35  47   79   99   76  103   71
%e A355663     6|   6  12  28  24   56   35   60  48  112   67   92   71  120
%e A355663     7|   7  15  16  31   32   47   48  63   64   79   80   95   96
%e A355663     8|   8  16  48  32   96   79  112  64  192  143  176  159  224
%e A355663     9|   9  19  35  39   71   99   67  79  143  195  156  199  135
%e A355663    10|  10  20  44  40   88   76   92  80  176  156  204  152  184
%e A355663    11|  11  23  39  47   79  103   71  95  159  199  152  207  143
%e A355663    12|  12  24  56  48  112   71  120  96  224  135  184  143  240
%o A355663 (PARI) toruns(n) = { my (r=[]); while (n, my (v=valuation(n+n%2, 2)); n\=2^v; r=concat(v, r)); r }
%o A355663 fromruns(r) = { my (v=0); for (k=1, #r, v=(v+k%2)*2^r[k]-k%2); v }
%o A355663 A(n,k) = { fromruns(Vec(Pol(toruns(n)) + Pol(toruns(k)))) }
%Y A355663 Cf. A001196, A014601, A101211, A355664.
%K A355663 nonn,base,tabl
%O A355663 0,4
%A A355663 _Rémy Sigrist_, Jul 13 2022