cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A355664 Square array A(n, k), n, k >= 0, read by antidiagonals; for any number n with runs in binary expansion (r_w, ..., r_0), let p(n) be the polynomial of a single indeterminate x where the coefficient of x^e is r_e for e = 0..w and otherwise 0, and let q be the inverse of p; A(n, k) = q(p(n) * p(k)).

This page as a plain text file.
%I A355664 #4 Jul 14 2022 09:35:26
%S A355664 0,0,0,0,1,0,0,2,2,0,0,3,9,3,0,0,4,12,12,4,0,0,5,35,15,35,5,0,0,6,38,
%T A355664 48,48,38,6,0,0,7,49,51,271,51,49,7,0,0,8,56,60,284,284,60,56,8,0,0,9,
%U A355664 135,63,387,313,387,63,135,9,0,0,10,142,192,448,398,398,448,192,142,10,0
%N A355664 Square array A(n, k), n, k >= 0, read by antidiagonals; for any number n with runs in binary expansion (r_w, ..., r_0), let p(n) be the polynomial of a single indeterminate x where the coefficient of x^e is r_e for e = 0..w and otherwise 0, and let q be the inverse of p; A(n, k) = q(p(n) * p(k)).
%C A355664 In other words, A(n, k) encodes the product of the polynomials encoded by n and k.
%H A355664 <a href="/index/Bi#binary">Index entries for sequences related to binary expansion of n</a>
%F A355664 A(n, k) = A(k, n).
%F A355664 A(n, 0) = 0.
%F A355664 A(n, 1) = n.
%F A355664 A(n, 3) = A001196(n).
%F A355664 A(n, 7) = A097254(n+1).
%F A355664 A(n, n) = A355654(n).
%e A355664 Array A(n, k) begins:
%e A355664   n\k|  0   1    2    3     4     5     6     7      8      9     10     11
%e A355664   ---+---------------------------------------------------------------------
%e A355664     0|  0   0    0    0     0     0     0     0      0      0      0      0
%e A355664     1|  0   1    2    3     4     5     6     7      8      9     10     11
%e A355664     2|  0   2    9   12    35    38    49    56    135    142    153    156
%e A355664     3|  0   3   12   15    48    51    60    63    192    195    204    207
%e A355664     4|  0   4   35   48   271   284   387   448   2111   2172   2275   2288
%e A355664     5|  0   5   38   51   284   313   398   455   2168   2289   2502   2531
%e A355664     6|  0   6   49   60   387   398   481   504   3079   3102   3185   3196
%e A355664     7|  0   7   56   63   448   455   504   511   3584   3591   3640   3647
%e A355664     8|  0   8  135  192  2111  2168  3079  3584  33279  33784  34695  34752
%e A355664     9|  0   9  142  195  2172  2289  3102  3591  33784  34785  36622  36739
%e A355664    10|  0  10  153  204  2275  2502  3185  3640  34695  36622  39993  40476
%e A355664    11|  0  11  156  207  2288  2531  3196  3647  34752  36739  40476  40719
%e A355664    12|  0  12  195  240  3087  3132  3843  4032  49215  49404  50115  50160
%o A355664 (PARI) toruns(n) = { my (r=[]); while (n, my (v=valuation(n+n%2, 2)); n\=2^v; r=concat(v, r)); r }
%o A355664 fromruns(r) = { my (v=0); for (k=1, #r, v=(v+k%2)*2^r[k]-k%2); v }
%o A355664 A(n,k) = { fromruns(Vec(Pol(toruns(n)) * Pol(toruns(k)))) }
%Y A355664 Cf. A001196, A097254, A101211, A355663.
%K A355664 nonn,base,tabl
%O A355664 0,8
%A A355664 _Rémy Sigrist_, Jul 13 2022