cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A355692 Dirichlet inverse of A355442, gcd(A003961(n), A276086(n)), where A003961 is fully multiplicative with a(p) = nextprime(p), and A276086 is primorial base exp-function.

This page as a plain text file.
%I A355692 #8 Jul 18 2022 16:39:17
%S A355692 1,-3,-1,0,-1,1,-1,24,-4,3,-1,16,-1,3,-3,-72,-1,6,-1,6,-3,3,-1,-68,0,
%T A355692 3,-116,0,-1,21,-1,24,1,3,-5,72,-1,3,-3,-120,-1,23,-1,6,-158,3,-1,28,
%U A355692 0,-18,-3,0,-1,632,-5,-24,-3,3,-1,-54,-1,3,16,504,-5,-1,-1,6,-3,15,-1,-400,-1,3,-236,0,1,23,-1,474,136
%N A355692 Dirichlet inverse of A355442, gcd(A003961(n), A276086(n)), where A003961 is fully multiplicative with a(p) = nextprime(p), and A276086 is primorial base exp-function.
%H A355692 Antti Karttunen, <a href="/A355692/b355692.txt">Table of n, a(n) for n = 1..11550</a>
%H A355692 Antti Karttunen, <a href="/A355692/a355692.txt">Data supplement: n, a(n) computed for n = 1..65537</a>
%H A355692 <a href="/index/Pri#prime_indices">Index entries for sequences computed from indices in prime factorization</a>
%H A355692 <a href="/index/Pri#primorialbase">Index entries for sequences related to primorial base</a>
%F A355692 a(1) = 1, and for n > 1, a(n) = -Sum_{d|n, d<n} A355442(n/d) * a(d).
%o A355692 (PARI)
%o A355692 A003961(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
%o A355692 A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); };
%o A355692 A355442(n) = gcd(A003961(n), A276086(n));
%o A355692 memoA355692 = Map();
%o A355692 A355692(n) = if(1==n,1,my(v); if(mapisdefined(memoA355692,n,&v), v, v = -sumdiv(n,d,if(d<n,A355442(n/d)*A355692(d),0)); mapput(memoA355692,n,v); (v)));
%Y A355692 Cf. A003961, A276086.
%Y A355692 Cf. also A346242, A354347, A354348, A354823, A354824.
%K A355692 sign
%O A355692 1,2
%A A355692 _Antti Karttunen_, Jul 18 2022