This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A355701 #12 Jul 17 2022 11:41:40 %S A355701 1,2,3,5,7,6,11,13,17,35,19,23,29,22,31,39,37,41,43,85,47,133,53,59, %T A355701 61,667,67,71,73,62,79,33,83,481,89,97,101,1763,103,107,109,235,113, %U A355701 119,127,1007,131,137,139,3599,149,151,157,1541,163,2059,167,173,179 %N A355701 a(n) = Product of prime(k+1) where k runs through the exponents of the positions 2^k of the 1-bits in A354169(n). %C A355701 Compactification of A354169. Offset matches A354169. %H A355701 Michael De Vlieger, <a href="/A355701/b355701.txt">Table of n, a(n) for n = 0..10000</a> %H A355701 Michael De Vlieger, <a href="/A355701/a355701.png">Annotated plot of prime factors p | a(n) at (n, pi(p))</a> for n = 0..50. %t A355701 nn = 58; r = c[_] = 0; m = 1; Array[Set[{a[#], c[#]}, {#, #}] &, 2, 0]; Do[k = SelectFirst[Union@ Map[Total, Rest@ Subsets[2^Reverse[Length[#] - Position[#, 1][[All, 1]]] &@ IntegerDigits[2^(r + 2) - m - 1, 2]]], c[#] == 0 &]; Set[{a[n], c[k]}, {k, n}]; m += a[n]; If[And[IntegerQ[#], # > 0], m -= a[#]] &[n/2]; If[And[EvenQ[k], PrimePowerQ[k], k > 2^r], r++], {n, 2, nn}]; Table[Times @@ Map[Prime, 1 + Length[#] - Position[#, 1][[All, 1]]] &@ IntegerDigits[a[n], 2], {n, 0, nn}] (* _Michael De Vlieger_, Jul 14 2022 *) %Y A355701 Cf. A005117, A090252, A354169. %K A355701 nonn %O A355701 0,2 %A A355701 _Michael De Vlieger_, Jul 14 2022