This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A355711 #9 Jul 19 2022 07:27:28 %S A355711 33,85,93,145,213,265,393,445,453,475,505,633,685,753,805,813,865,933, %T A355711 985,993,1045,1113,1165,1293,1345,1353,1405,1430,1533,1585,1624,1653, %U A355711 1705,1713,1765,1833,1885,1893,1945,2013,2065,2193,2245,2253,2275,2305,2433,2485 %N A355711 Starts of runs of 3 consecutive numbers with the same number of 5-smooth divisors. %C A355711 Numbers k such that A355583(k) = A355583(k+1) = A355583(k+2). %H A355711 Amiram Eldar, <a href="/A355711/b355711.txt">Table of n, a(n) for n = 1..10000</a> %e A355711 33 is a term since A355583(33) = A355583(34) = A355583(35) = 2. %t A355711 f[n_] := Times @@ (1 + IntegerExponent[n, {2, 3, 5}]); s = {}; m = 3; fs = f /@ Range[m]; Do[If[Equal @@ fs, AppendTo[s, n - m]]; fs = Rest @ AppendTo[fs, f[n]], {n, m + 1, 2500}]; s %o A355711 (PARI) s(n) = (valuation(n, 2) + 1) * (valuation(n, 3) + 1) * (valuation(n, 5) + 1); %o A355711 s1 = s(1); s2 = s(2); for(k = 3, 2500, s3 = s(k); if(s1 == s2 && s2 == s3, print1(k-2,", ")); s1 = s2; s2 = s3); %Y A355711 Cf. A355583. %Y A355711 Subsequence of A355710. %Y A355711 A355712 is a subsequence. %Y A355711 Similar sequences: A005238, A006073, A045939, A332313, A332387. %K A355711 nonn %O A355711 1,1 %A A355711 _Amiram Eldar_, Jul 15 2022