This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A355712 #10 Jul 19 2022 08:03:05 %S A355712 28374,133623,136374,187623,190374,298374,349623,352374,457623,460374, %T A355712 511623,619623,622374,673623,676374,781623,838374,943623,946374, %U A355712 997623,1000374,1108374,1159623,1162374,1267623,1270374,1321623,1429623,1432374,1483623,1486374,1591623 %N A355712 Starts of runs of 4 consecutive numbers with the same number of 5-smooth divisors. %C A355712 Numbers k such that A355583(k) = A355583(k+1) = A355583(k+2) = A355583(k+3). %C A355712 Are there runs of 5 consecutive numbers with the same number of 5-smooth divisors? There are no such runs below 10^10. %H A355712 Amiram Eldar, <a href="/A355712/b355712.txt">Table of n, a(n) for n = 1..10000</a> %e A355712 28374 is a term since A355583(28374) = A355583(28375) = A355583(28376) = A355583(28377) = 4. %t A355712 f[n_] := Times @@ (1 + IntegerExponent[n, {2, 3, 5}]); s = {}; m = 4; fs = f /@ Range[m]; Do[If[Equal @@ fs, AppendTo[s, n - m]]; fs = Rest @ AppendTo[fs, f[n]], {n, m + 1, 10^6}]; s %o A355712 (PARI) s(n) = (valuation(n, 2) + 1) * (valuation(n, 3) + 1) * (valuation(n, 5) + 1); %o A355712 s1 = s(1); s2 = s(2); s3 = s(3); for(k = 4, 1.6e6, s4 = s(k); if(s1 == s2 && s2 == s3 && s3 == s4, print1(k-3,", ")); s1 = s2; s2 = s3; s3 = s4); %Y A355712 Cf. A355583. %Y A355712 Subsequence of A355710 and A355711. %Y A355712 Similar sequences: A006601, A332314, A332388. %K A355712 nonn %O A355712 1,1 %A A355712 _Amiram Eldar_, Jul 15 2022