A355713 Numbers k such that k and k+1 have the same sum of 5-smooth divisors.
175, 2224, 2575, 4975, 7024, 9424, 9775, 11824, 12175, 14224, 14575, 16975, 19024, 21424, 21775, 23824, 24175, 26224, 26575, 28975, 31024, 33424, 33775, 35824, 36175, 38224, 38575, 40975, 43024, 45424, 45775, 47824, 48175, 50224, 50575, 52975, 55024, 57424, 57775
Offset: 1
Keywords
Examples
175 is a term since A355584(175) = A355584(176) = 31.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
f[p_, e_] := If[p > 5, 1, (p^(e + 1) - 1)/(p - 1)]; s[1] = 1; s[n_] := Times @@ (f @@@ FactorInteger[n]); Select[Range[10^5], s[#] == s[# + 1] &]
-
PARI
s(n) = (2^(valuation(n, 2) + 1) - 1) * (3^(valuation(n, 3) + 1) - 1) * (5^(valuation(n, 5) + 1) - 1) / 8; s1 = s(1); for(k = 2, 6e4, s2 = s(k); if(s1 == s2, print1(k-1,", ")); s1 = s2);
Comments