cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A355717 Smallest number of generalized pentagonal numbers which sum to n.

This page as a plain text file.
%I A355717 #59 Mar 22 2025 23:34:27
%S A355717 0,1,1,2,2,1,2,1,2,2,2,3,1,2,2,1,2,2,3,2,2,3,1,2,2,3,1,2,2,2,2,2,3,2,
%T A355717 2,1,2,2,2,3,1,2,2,3,2,2,3,2,2,3,2,1,2,2,3,2,2,1,2,2,3,2,2,2,2,3,2,3,
%U A355717 3,2,1,2,2,2,3,2,3,1,2,2,2,3,2,2,2,2,2,3,3,2,3,2,1,2,2,3,2,2,3,2,1
%N A355717 Smallest number of generalized pentagonal numbers which sum to n.
%C A355717 From Euler's Pentagonal Number Theorem, every number is expressible as the sum of at most three generalized pentagonal numbers (A001318) (see Richard K. Guy reference).
%C A355717 Corresponding sums of only pentagonal numbers of positive rank are A100878(n). Those numbers are a subset of the generalized pentagonals so that a(n) <= A100878(n).
%C A355717 More specifically, by the definition given in the name, we understand the following: Given n >= 0 we seek a multiset S such that (1) S is a multiset of GPN = {0, 1, 2, 5, ...} = A001318; (2) Sum(S) = n; (3) if T is a multiset of GPN and Sum(T) = n then card(T) >= card(S). Additionally one might require that the set is not empty. If a multiset satisfies these three conditions, then a(n) = card(S). Note that no actual summation has to be performed to decide the value of a(n); only membership in GPN needs to be tested, as shown in the Maple and Python program. - _Peter Luschny_, Jul 18 2022
%D A355717 Richard K. Guy, Unsolved Problems in Number Theory, 3rd Edition, Springer, 2004, Section D3, Figurate numbers, pp. 222-228.
%H A355717 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PentagonalNumberTheorem.html">Pentagonal Number Theorem</a>.
%F A355717 a(n) <= 3.
%F A355717 a(A001318(n)) = 1.
%e A355717 Let GPN = {0, 1, 2, 5, ...} be the generalized pentagonal numbers.
%e A355717 a(0) = 0 since {} is a multiset of GPN, Sum {} = 0, and card({}) = 0.
%e A355717 a(1) = 1 since {1} is a multiset of GPN, Sum {1} = 1, and card({1}) = 1.
%e A355717 a(3) = 2 since {1, 2} is a multiset of GPN, Sum {1, 2} = 3, and card({1, 2}) = 2.
%e A355717 a(11) = 3 since {2, 2, 7} is a multiset of GPN, Sum {2, 2, 7} = 11, card({2, 2, 7}) = 3, and no other multiset S of GPN with Sum(S) = 11 has less members.
%p A355717 A355717_list := proc(upto) local P, Q, k, q, isgpn; P := []; Q := [0];
%p A355717 isgpn := k -> ormap(n -> 0 = 8*k - (n + irem(n,2)) * (3*n + 2 - irem(n,2)), [$0..k]);
%p A355717 for k from 1 to upto do
%p A355717     q := 3;
%p A355717     if isgpn(k) then
%p A355717         P := [op(P), k]; q := 1;
%p A355717         elif ormap(p -> member(k - p, P), P) then q := 2 fi:
%p A355717         Q := [op(Q), q];
%p A355717 od: Q end:
%p A355717 print(A355717_list(100));  # _Peter Luschny_, Jul 18 2022
%o A355717 (Python)
%o A355717 def A355717_list(ln: int) -> list[int]:
%o A355717     P: list[int] = []
%o A355717     Q: list[int] = [0]
%o A355717     def is_gpn(k: int) -> bool:
%o A355717         return any(8 * k == ((n + n % 2) * (3 * n + 2 - n % 2)) for n in range(k + 1))
%o A355717     for k in range(1, ln):
%o A355717         q = 3
%o A355717         if is_gpn(k):
%o A355717             P.append(k)
%o A355717             q = 1
%o A355717         elif any([(k - p) in P for p in P]):
%o A355717             q = 2
%o A355717         Q.append(q)
%o A355717     return Q
%o A355717 print(A355717_list(100))  # _Peter Luschny_, Jul 18 2022
%Y A355717 Cf. A001318, A093519 (indices of 3's).
%Y A355717 Cf. A100878.
%K A355717 nonn
%O A355717 0,4
%A A355717 _Bernard Schott_, Jul 15 2022