cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A355719 Expansion of e.g.f. exp( x/(1 - log(1+x)) ).

This page as a plain text file.
%I A355719 #16 Jul 15 2022 15:04:41
%S A355719 1,1,3,10,45,231,1405,9472,72177,596845,5442631,53052726,561826309,
%T A355719 6286949787,75704999721,954108249676,12862823623393,179921659771257,
%U A355719 2683989118991467,41178997678745506,673670267643931581,11223738258484213519,200027545794685345749
%N A355719 Expansion of e.g.f. exp( x/(1 - log(1+x)) ).
%C A355719 a(43) is negative. - _Vaclav Kotesovec_, Jul 15 2022
%F A355719 a(0) = 1; a(n) = Sum_{k=1..n} A108125(k) * binomial(n-1,k-1) * a(n-k).
%o A355719 (PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(x/(1-log(1+x)))))
%o A355719 (PARI) a006252(n) = sum(k=0, n, k!*stirling(n, k, 1));
%o A355719 a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=1, i, j*a006252(j-1)*binomial(i-1, j-1)*v[i-j+1])); v;
%Y A355719 Cf. A355718, A355720.
%Y A355719 Cf. A006252, A108125.
%K A355719 sign
%O A355719 0,3
%A A355719 _Seiichi Manyama_, Jul 15 2022