This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A355734 #7 Jul 22 2022 20:52:04 %S A355734 1,3,7,13,21,35,39,89,133,105,91,195,351,285,247,333,273,481,455,555, %T A355734 623,801,791,741,1359,1157,1281,1335,1365,1443,1977,1729,1967,1869, %U A355734 2109,3185,2373,2769,2639,4361,3367,3653,3885,3471,4613,5883,5187,5551,6327 %N A355734 Least k such that there are exactly n multisets that can be obtained by choosing a divisor of each prime index of k. %C A355734 This is the position of first appearance of n in A355733. %C A355734 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. %e A355734 The terms together with their prime indices begin: %e A355734 1: {} %e A355734 3: {2} %e A355734 7: {4} %e A355734 13: {6} %e A355734 21: {2,4} %e A355734 35: {3,4} %e A355734 39: {2,6} %e A355734 89: {24} %e A355734 133: {4,8} %e A355734 105: {2,3,4} %e A355734 91: {4,6} %e A355734 195: {2,3,6} %e A355734 351: {2,2,2,6} %e A355734 For example, the choices for a(12) = 195 are: %e A355734 {1,1,1} {1,2,2} {1,3,6} %e A355734 {1,1,2} {1,2,3} {2,2,3} %e A355734 {1,1,3} {1,2,6} {2,3,3} %e A355734 {1,1,6} {1,3,3} {2,3,6} %t A355734 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A355734 mnrm[s_]:=If[Min@@s==1,mnrm[DeleteCases[s-1,0]]+1,0]; %t A355734 az=Table[Length[Union[Sort/@Tuples[Divisors/@primeMS[n]]]],{n,1000}]; %t A355734 Table[Position[az,k][[1,1]],{k,mnrm[az]}] %Y A355734 Counting all choices of divisors gives A355732, firsts of A355731. %Y A355734 Positions of first appearances in A355733. %Y A355734 Choosing weakly increasing divisors gives A355736, firsts of A355735. %Y A355734 A000005 counts divisors. %Y A355734 A001414 adds up distinct prime divisors, counted by A001221. %Y A355734 A003963 multiplies together the prime indices of n. %Y A355734 A056239 adds up prime indices, row sums of A112798, counted by A001222. %Y A355734 A120383 lists numbers divisible by all of their prime indices. %Y A355734 A324850 lists numbers divisible by the product of their prime indices. %Y A355734 Cf. A000720, A076610, A340852, A344606, A355737, A355739, A355740, A355741, A355744, A355747. %K A355734 nonn %O A355734 1,2 %A A355734 _Gus Wiseman_, Jul 21 2022