This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A355736 #7 Jul 22 2022 20:51:59 %S A355736 1,3,7,13,21,37,39,89,133,117,111,273,351,259,267,333,453,793,669,623, %T A355736 999,777,843,1491,1157,1561,2863,1443,1963,2331,1977,1869,2899,2529, %U A355736 3207,4107,3171,5073,4329,3653,4667,3471,7399,4613,7587,5931,7269,5889,7483 %N A355736 Least k such that there are exactly n ways to choose a divisor of each prime index of k (taken in weakly increasing order) such that the result is also weakly increasing. %C A355736 This is the position of first appearance of n in A355735. %C A355736 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. %e A355736 The terms together with their prime indices begin: %e A355736 1: {} %e A355736 3: {2} %e A355736 7: {4} %e A355736 13: {6} %e A355736 21: {2,4} %e A355736 37: {12} %e A355736 39: {2,6} %e A355736 89: {24} %e A355736 133: {4,8} %e A355736 117: {2,2,6} %e A355736 111: {2,12} %e A355736 273: {2,4,6} %e A355736 351: {2,2,2,6} %e A355736 For example, the choices for a(12) = 273 are: %e A355736 {1,1,1} {1,2,2} {2,2,2} %e A355736 {1,1,2} {1,2,3} {2,2,3} %e A355736 {1,1,3} {1,2,6} {2,2,6} %e A355736 {1,1,6} {1,4,6} {2,4,6} %t A355736 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A355736 mnrm[s_]:=If[Min@@s==1,mnrm[DeleteCases[s-1,0]]+1,0]; %t A355736 az=Table[Length[Select[Tuples[Divisors/@primeMS[n]],LessEqual@@#&]],{n,1000}]; %t A355736 Table[Position[az,k][[1,1]],{k,mnrm[az]}] %Y A355736 Allowing any choice of divisors gives A355732, firsts of A355731. %Y A355736 Choosing a multiset instead of sequence gives A355734, firsts of A355733. %Y A355736 Positions of first appearances in A355735. %Y A355736 The case of prime factors instead of divisors is counted by A355745. %Y A355736 The decreasing version is counted by A355749. %Y A355736 A000005 counts divisors. %Y A355736 A001414 adds up distinct prime divisors, counted by A001221. %Y A355736 A003963 multiplies together the prime indices of n. %Y A355736 A056239 adds up prime indices, row sums of A112798, counted by A001222. %Y A355736 A120383 lists numbers divisible by all of their prime indices. %Y A355736 A324850 lists numbers divisible by the product of their prime indices. %Y A355736 Cf. A000720, A076610, A355737, A355739, A355740, A355741, A355744. %K A355736 nonn %O A355736 1,2 %A A355736 _Gus Wiseman_, Jul 21 2022