This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A355738 #7 Jul 22 2022 20:51:54 %S A355738 1,2,6,9,15,49,35,27,45,98,63,105,171,117,81,135,245,343,273,549,189, %T A355738 1083,315,5618,741,686,507,513,351,243,405,7467,6419,5575,735,6859, %U A355738 1813,3231,1183,1197,3537,819,1647,567,945,2197,8397,3211,1715,3249,3367 %N A355738 Least k such that there are exactly n ways to choose a sequence of divisors, one of each prime index of k (with multiplicity), such that the result has no common divisor > 1. %C A355738 This is the position of first appearance of n in A355737. %C A355738 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. %H A355738 Wikipedia, <a href="https://en.wikipedia.org/wiki/Coprime_integers">Coprime integers</a>. %e A355738 The terms together with their prime indices begin: %e A355738 1: {} %e A355738 2: {1} %e A355738 6: {1,2} %e A355738 9: {2,2} %e A355738 15: {2,3} %e A355738 49: {4,4} %e A355738 35: {3,4} %e A355738 27: {2,2,2} %e A355738 45: {2,2,3} %e A355738 98: {1,4,4} %e A355738 63: {2,2,4} %e A355738 105: {2,3,4} %e A355738 171: {2,2,8} %e A355738 117: {2,2,6} %e A355738 81: {2,2,2,2} %e A355738 135: {2,2,2,3} %e A355738 For example, the choices for a(12) = 105 are: %e A355738 (1,1,1) (1,3,2) (2,1,4) %e A355738 (1,1,2) (1,3,4) (2,3,1) %e A355738 (1,1,4) (2,1,1) (2,3,2) %e A355738 (1,3,1) (2,1,2) (2,3,4) %t A355738 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A355738 mnrm[s_]:=If[Min@@s==1,mnrm[DeleteCases[s-1,0]]+1,0]; %t A355738 az=Table[Length[Select[Tuples[Divisors/@primeMS[n]],GCD@@#==1&]],{n,100}]; %t A355738 Table[Position[az+1,k][[1,1]],{k,mnrm[az+1]}] %Y A355738 Not requiring coprimality gives A355732, firsts of A355731. %Y A355738 Positions of first appearances in A355737. %Y A355738 A000005 counts divisors. %Y A355738 A001221 counts distinct prime factors, with sum A001414. %Y A355738 A001222 counts prime factors with multiplicity. %Y A355738 A003963 multiplies together the prime indices of n. %Y A355738 A056239 adds up prime indices, row sums of A112798. %Y A355738 A120383 lists numbers divisible by all of their prime indices. %Y A355738 A289508 gives GCD of prime indices. %Y A355738 A289509 ranks relatively prime partitions, odd A302697, squarefree A302796. %Y A355738 A324850 lists numbers divisible by the product of their prime indices. %Y A355738 Cf. A000720, A007359, A051424, A076610, A302696, A302698, A355733, A355735, A355739, A355741, A355748. %K A355738 nonn %O A355738 1,2 %A A355738 _Gus Wiseman_, Jul 21 2022