This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A355740 #15 Feb 16 2024 09:56:59 %S A355740 4,8,12,16,18,20,24,27,28,32,36,40,44,48,50,52,54,56,60,64,68,72,76, %T A355740 80,81,84,88,90,92,96,100,104,108,112,116,120,124,125,126,128,132,135, %U A355740 136,140,144,148,150,152,156,160,162,164,168,172,176,180,184,188 %N A355740 Numbers of which it is not possible to choose a different divisor of each prime index. %C A355740 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. %C A355740 By Hall's marriage theorem, k is a term if and only if there is a sub-multiset S of the prime indices of k such that fewer than |S| numbers are divisors of a member of S. Equivalently, k is divisible by a member of A370348. - _Robert Israel_, Feb 15 2024 %H A355740 Robert Israel, <a href="/A355740/b355740.txt">Table of n, a(n) for n = 1..10000</a> %H A355740 Wikipedia, <a href="https://en.wikipedia.org/wiki/Cartesian_product">Cartesian product</a>. %F A355740 We have A001221(a(n)) >= A303975(a(n)). %e A355740 The terms together with their prime indices begin: %e A355740 4: {1,1} %e A355740 8: {1,1,1} %e A355740 12: {1,1,2} %e A355740 16: {1,1,1,1} %e A355740 18: {1,2,2} %e A355740 20: {1,1,3} %e A355740 24: {1,1,1,2} %e A355740 27: {2,2,2} %e A355740 28: {1,1,4} %e A355740 32: {1,1,1,1,1} %e A355740 36: {1,1,2,2} %e A355740 40: {1,1,1,3} %e A355740 44: {1,1,5} %e A355740 48: {1,1,1,1,2} %e A355740 For example, the choices of a divisor of each prime index of 90 are: (1,1,1,1), (1,1,1,3), (1,1,2,1), (1,1,2,3), (1,2,1,1), (1,2,1,3), (1,2,2,1), (1,2,2,3). But none of these has all distinct elements, so 90 is in the sequence. %p A355740 filter:= proc(n) uses numtheory, GraphTheory; local B, S, F, D, E, G, t, d; %p A355740 F:= ifactors(n)[2]; %p A355740 F:= map(t -> [pi(t[1]), t[2]], F); %p A355740 D:= `union`(seq(divisors(t[1]), t = F)); %p A355740 F:= map(proc(t) local i; seq([t[1], i], i=1..t[2]) end proc, F); %p A355740 if nops(D) < nops(F) then return false fi; %p A355740 E:= {seq(seq({t, d}, d=divisors(t[1])), t = F)}; %p A355740 S:= map(t -> convert(t, name), [op(F), op(D)]); %p A355740 E:= map(e -> map(convert, e, name), E); %p A355740 G:= Graph(S, E); %p A355740 B:= BipartiteMatching(G); %p A355740 B[1] = nops(F); %p A355740 end proc: %p A355740 remove(filter, [$1..200]); # _Robert Israel_, Feb 15 2024 %t A355740 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A355740 Select[Range[100],Select[Tuples[Divisors/@primeMS[#]],UnsameQ@@#&]=={}&] %Y A355740 Positions of 0's in A355739. %Y A355740 The case of just prime factors (not all divisors) is A355529, odd A355535. %Y A355740 The unordered case is counted by A355733, firsts A355734. %Y A355740 A000005 counts divisors. %Y A355740 A001414 adds up distinct prime divisors, counted by A001221. %Y A355740 A003963 multiplies together the prime indices of n. %Y A355740 A056239 adds up prime indices, row sums of A112798, counted by A001222. %Y A355740 A120383 lists numbers divisible by all of their prime indices. %Y A355740 A324850 lists numbers divisible by the product of their prime indices. %Y A355740 A355731 counts choices of a divisor of each prime index, firsts A355732. %Y A355740 A355741 chooses prime factors of prime indices, variations A355744, A355745. %Y A355740 Cf. A000720, A076610, A335433, A335448, A340827, A355737, A355749, A370348. %K A355740 nonn %O A355740 1,1 %A A355740 _Gus Wiseman_, Jul 22 2022