This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A355743 #13 Apr 02 2025 09:51:14 %S A355743 1,3,5,7,9,11,15,17,19,21,23,25,27,31,33,35,41,45,49,51,53,55,57,59, %T A355743 63,67,69,75,77,81,83,85,93,95,97,99,103,105,109,115,119,121,123,125, %U A355743 127,131,133,135,147,153,155,157,159,161,165,171,175,177,179,187 %N A355743 Numbers whose prime indices are all prime-powers. %C A355743 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. %C A355743 Also MM-numbers of multiset partitions into constant multisets, where the multiset of multisets with MM-number n is formed by taking the multiset of prime indices of each part of the multiset of prime indices of n. For example, the prime indices of 78 are {1,2,6}, so the multiset of multisets with MM-number 78 is {{},{1},{1,2}}. %H A355743 Robert Price, <a href="/A355743/b355743.txt">Table of n, a(n) for n = 1..1410</a> %e A355743 The terms together with their prime indices begin: %e A355743 1: {} %e A355743 3: {2} %e A355743 5: {3} %e A355743 7: {4} %e A355743 9: {2,2} %e A355743 11: {5} %e A355743 15: {2,3} %e A355743 17: {7} %e A355743 19: {8} %e A355743 21: {2,4} %e A355743 23: {9} %e A355743 25: {3,3} %e A355743 27: {2,2,2} %e A355743 31: {11} %e A355743 33: {2,5} %e A355743 35: {3,4} %e A355743 41: {13} %e A355743 45: {2,2,3} %t A355743 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A355743 Select[Range[100],And@@PrimePowerQ/@primeMS[#]&] %Y A355743 The multiplicative version is A000688, strict A050361, coprime A354911. %Y A355743 The case of only primes (not all prime-powers) is A076610, strict A302590. %Y A355743 Allowing prime index 1 gives A302492. %Y A355743 These are the products of elements of A302493. %Y A355743 Requiring n to be a prime-power gives A302601. %Y A355743 These are the positions of 1's in A355741. %Y A355743 The squarefree case is A356065. %Y A355743 The complement is A356066. %Y A355743 A001222 counts prime-power divisors. %Y A355743 A023894 counts ptns into prime-powers, strict A054685, with 1's A023893. %Y A355743 A034699 gives maximal prime-power divisor. %Y A355743 A246655 lists the prime-powers (A000961 includes 1), towers A164336. %Y A355743 A355742 chooses a prime-power divisor of each prime index. %Y A355743 Cf. A085970, A106244, A279784, A295935, A355731, A356064. %K A355743 nonn %O A355743 1,2 %A A355743 _Gus Wiseman_, Jul 24 2022