This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A355746 #16 Aug 03 2022 12:40:02 %S A355746 1,1,1,1,1,2,2,2,2,4,4,6,6,12,20,20,20,26,26,36,58,116,116,140,140, %T A355746 280,280,384,384,536,536,536,844,1688,2380,2716,2716,5432,8484,10152, %U A355746 10152,13308,13308,18064,21616,43232,43232,47648,47648,54656,84480,114304,114304 %N A355746 Number of different multisets that can be obtained by choosing a prime index (or a prime factor) of each integer from 2 to n. %H A355746 Michael S. Branicky, <a href="/A355746/b355746.txt">Table of n, a(n) for n = 1..75</a> %F A355746 a(n) = A355744(A070826(n)). %F A355746 a(p) = a(p-1) for p prime. - _Michael S. Branicky_, Aug 03 2022 %e A355746 The a(n) multisets for n = 2, 6, 10, 12: %e A355746 {1} {1,1,1,2,3} {1,1,1,1,1,2,2,3,4} {1,1,1,1,1,1,2,2,3,4,5} %e A355746 {1,1,2,2,3} {1,1,1,1,2,2,2,3,4} {1,1,1,1,1,2,2,2,3,4,5} %e A355746 {1,1,1,1,2,2,3,3,4} {1,1,1,1,1,2,2,3,3,4,5} %e A355746 {1,1,1,2,2,2,3,3,4} {1,1,1,1,2,2,2,2,3,4,5} %e A355746 {1,1,1,1,2,2,2,3,3,4,5} %e A355746 {1,1,1,2,2,2,2,3,3,4,5} %t A355746 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A355746 Table[Length[Union[Sort/@Tuples[primeMS/@Range[2,n]]]],{n,15}] %o A355746 (Python) %o A355746 from sympy import factorint %o A355746 from itertools import count, islice %o A355746 def agen(): %o A355746 s = {(1,)} %o A355746 for n in count(2): %o A355746 yield len(s) %o A355746 s = set(tuple(sorted(t+(d,))) for t in s for d in factorint(n)) %o A355746 print(list(islice(agen(), 53))) # _Michael S. Branicky_, Aug 03 2022 %Y A355746 The sum of the same integers is A000096. %Y A355746 The product of the same integers is A000142, Heinz number A070826. %Y A355746 The integers themselves are the rows of A131818 (shifted). %Y A355746 Counting sequences instead of multisets: A355537, with multiplicity A327486. %Y A355746 Using prime indices instead of 2..n gives A355744, for sequences A355741. %Y A355746 The version for divisors instead of prime factors is A355747. %Y A355746 A000040 lists the prime numbers. %Y A355746 A001221 counts distinct prime factors, with sum A001414. %Y A355746 A001222 counts prime factors with multiplicity. %Y A355746 A003963 multiplies together the prime indices of n. %Y A355746 A056239 adds up prime indices, row sums of A112798. %Y A355746 Cf. A000720, A002110, A076610, A355538, A355731, A355733, A355740, A355742, A355745. %K A355746 nonn %O A355746 1,6 %A A355746 _Gus Wiseman_, Jul 20 2022 %E A355746 a(28) and beyond from _Michael S. Branicky_, Aug 03 2022