This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A355747 #21 Aug 08 2022 14:21:11 %S A355747 1,1,2,4,10,20,58,116,320,772,2170,4340,14112,28224,78120,212004, %T A355747 612232,1224464,3873760,7747520,24224608,64595088,175452168,350904336 %N A355747 Number of multisets that can be obtained by choosing a divisor of each positive integer from 1 to n. %F A355747 a(n) = A355733(A070826(n)). %F A355747 a(p) = 2*a(p-1) for p prime. - _Michael S. Branicky_, Aug 03 2022 %e A355747 The a(0) = 1 through a(4) = 10 multisets: %e A355747 {} {1} {1,1} {1,1,1} {1,1,1,1} %e A355747 {1,2} {1,1,2} {1,1,1,2} %e A355747 {1,1,3} {1,1,1,3} %e A355747 {1,2,3} {1,1,1,4} %e A355747 {1,1,2,2} %e A355747 {1,1,2,3} %e A355747 {1,1,2,4} %e A355747 {1,1,3,4} %e A355747 {1,2,2,3} %e A355747 {1,2,3,4} %t A355747 Table[Length[Union[Sort/@Tuples[Divisors/@Range[n]]]],{n,0,10}] %o A355747 (Python) %o A355747 from sympy import divisors %o A355747 from itertools import count, islice %o A355747 def agen(): %o A355747 s = {tuple()} %o A355747 for n in count(1): %o A355747 yield len(s) %o A355747 s = set(tuple(sorted(t+(d,))) for t in s for d in divisors(n)) %o A355747 print(list(islice(agen(), 16))) # _Michael S. Branicky_, Aug 03 2022 %Y A355747 The sum of the same integers is A000096. %Y A355747 The product of the same integers is A000142, Heinz number A070826. %Y A355747 Counting sequences instead of multisets gives A066843. %Y A355747 The integers themselves are the rows of A131818 (shifted). %Y A355747 For prime indices we have A355733, only prime factors A355744. %Y A355747 For prime factors instead of divisors we have A355746, factors A355537. %Y A355747 A000005 counts divisors. %Y A355747 A000040 lists the prime numbers. %Y A355747 A001221 counts distinct prime factors, with sum A001414. %Y A355747 A001222 counts prime factors with multiplicity. %Y A355747 Cf. A000720, A002110, A006218, A076610, A327486, A355538, A355731, A355737, A355741, A355745. %K A355747 nonn,more %O A355747 0,3 %A A355747 _Gus Wiseman_, Jul 20 2022 %E A355747 a(15)-a(21) from _Michael S. Branicky_, Aug 03 2022 %E A355747 a(22)-a(23) from _Michael S. Branicky_, Aug 08 2022