This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A355749 #5 Jul 19 2022 08:03:43 %S A355749 1,1,2,1,2,1,3,1,3,1,2,1,4,1,2,1,2,1,4,1,3,1,3,1,3,1,4,1,4,1,2,1,2,1, %T A355749 3,1,6,1,3,1,2,1,4,1,3,1,4,1,6,1,2,1,5,1,2,1,3,1,2,1,6,1,4,1,4,1,2,1, %U A355749 2,1,6,1,4,1,2,1,3,1,4,1,5,1,2,1,2,1,3 %N A355749 Number of ways to choose a weakly decreasing sequence of divisors, one of each prime index of n (with multiplicity, taken in weakly increasing order). %C A355749 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. %H A355749 Wikipedia, <a href="https://en.wikipedia.org/wiki/Cartesian_product">Cartesian product</a>. %e A355749 The a(2) = 1 through a(19) = 4 choices: %e A355749 1 1 11 1 11 1 111 11 11 1 111 1 11 11 1111 1 111 1 %e A355749 2 3 2 21 5 2 21 7 2 %e A355749 4 22 3 4 %e A355749 6 8 %t A355749 Table[Length[Select[Tuples[Divisors/@primeMS[n]], GreaterEqual@@#&]],{n,100}] %Y A355749 Allowing any choice of divisors gives A355731, firsts A355732. %Y A355749 Choosing a multiset instead of sequence gives A355733, firsts A355734. %Y A355749 The reverse version is A355735, firsts A355736, only primes A355745. %Y A355749 A000005 counts divisors. %Y A355749 A001414 adds up distinct prime divisors, counted by A001221. %Y A355749 A003963 multiplies together the prime indices of n. %Y A355749 A056239 adds up prime indices, row sums of A112798, counted by A001222. %Y A355749 A061395 selects the maximum prime index. %Y A355749 Cf. A000720, A076610, A120383, A316524, A324850, A355737, A355739, A355740, A355741, A355742, A355744. %K A355749 nonn %O A355749 1,3 %A A355749 _Gus Wiseman_, Jul 18 2022