cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A355750 Sum of the divisors of 2n minus the number of divisors of 2n.

This page as a plain text file.
%I A355750 #10 Jul 18 2022 19:41:40
%S A355750 1,4,8,11,14,22,20,26,33,36,32,52,38,50,64,57,50,82,56,82,88,78,68,
%T A355750 114,87,92,112,112,86,156,92,120,136,120,136,183,110,134,160,176,122,
%U A355750 212,128,172,222,162,140,240,165,208,208,202,158,268,208,238,232,204,176,344,182
%N A355750 Sum of the divisors of 2n minus the number of divisors of 2n.
%C A355750 Consider the partitions of 2n into 2 parts (s,t), where s <= t. a(n) gives the sum of all the quotients t/s such that t/s is an integer. (See example.)
%F A355750 a(n) = sigma(2n) - tau(2n).
%F A355750 a(n) = Sum_{d|2n} (2n-d)/d.
%F A355750 a(n) = A065608(2n) = A000203(2n) - A000005(2n).
%F A355750 a(n) = A062731(n) - A099777(n).
%F A355750 a(n) = Sum_{k=1..n} m*c(m), where m=(2n-k)/k and c(m)=1-ceiling(m)+floor(m).
%e A355750 a(7) = 20; the partitions of 2*7 = 14 into two parts (s,t) where s <= t are: (1,13), (2,12), (3,11), (4,10), (5,9), (6,8), and (7,7). The sum of the quotients t/s such that each t/s is an integer is then: 13/1 + 12/2 + 7/7 = 13 + 6 + 1 = 20.
%t A355750 Table[DivisorSigma[1, 2 n] - DivisorSigma[0, 2 n], {n, 80}]
%o A355750 (PARI) a(n) = my(f=factor(2*n)); sigma(f) - numdiv(f); \\ _Michel Marcus_, Jul 16 2022
%Y A355750 Cf. A000005 (tau), A000203 (sigma), A062731, A099777.
%Y A355750 Bisection of A065608.
%K A355750 nonn,easy
%O A355750 1,2
%A A355750 _Wesley Ivan Hurt_, Jul 15 2022