A355751 Positive numbers k such that the centered cube number k^3 + (k+1)^3 is equal to the difference of two positive cubes and to A352759(n).
4, 121, 562, 1543, 3280, 5989, 9886, 15187, 22108, 30865, 41674, 54751, 70312, 88573, 109750, 134059, 161716, 192937, 227938, 266935, 310144, 357781, 410062, 467203, 529420, 596929, 669946, 748687, 833368, 924205, 1021414, 1125211, 1235812, 1353433
Offset: 1
Examples
a(1) = 4 is a term because 4^3 + 5^3 = 6^3 - 3^3 and 6 - 3 = 3 = 3*(2*1 - 1). a(2) = 121 is a term because 121^3 + 122^3 = 369^3 - 360^3 and 369 - 360 = 9 = 3*(2*2 - 1). a(3) = (9*(2*3 - 1)^3 - 1) / 2 = 562. a(4) = 3*562 - 3*121 + 4 + 216 = 1543.
Links
- Vladimir Pletser, Table of n, a(n) for n = 1..10000
- A. Grinstein, Ramanujan and 1729, University of Melbourne Dept. of Math and Statistics Newsletter: Issue 3, 1998.
- Vladimir Pletser, Euler's and the Taxi-Cab relations and other numbers that can be written twice as sums of two cubed integers, submitted. Preprint available on ResearchGate, 2022.
- Eric Weisstein's World of Mathematics, Centered Cube Number
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Crossrefs
Programs
-
Maple
restart; for n to 20 do (1/2)*(9*(2*n - 1)^3-1); end do;
Formula
a(n) = (9*(2*n - 1)^3 - 1) / 2.
For n > 3, a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) + 216, with a(1) = 4, a(2) = 121 and a(3) = 562.
a(n) can be extended for negative n such that a(-n) = - a(n+1) - 1.
From Jianing Song, Jul 18 2022: (Start)
G.f.: x*(4+105*x+102*x^2+5*x^3)/(1-x)^4.
E.g.f.: 5 + exp(x)*(-5+9*x+54*x^2+36*x^3). (End)
Comments