cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A355752 a(n) = 3*(2*n - 1)*( 3*(2*n - 1)^3 + 1) / 2.

Original entry on oeis.org

6, 369, 2820, 10815, 29538, 65901, 128544, 227835, 375870, 586473, 875196, 1259319, 1757850, 2391525, 3182808, 4155891, 5336694, 6752865, 8433780, 10410543, 12715986, 15384669, 18452880, 21958635, 25941678, 30443481, 35507244, 41177895, 47502090, 54528213, 62306376, 70888419, 80327910, 90680145, 102002148, 114352671, 127792194
Offset: 1

Views

Author

Vladimir Pletser, Jul 15 2022

Keywords

Comments

Numbers C > 0 such that A = B^3 + (B+1)^3 = C^3 - D^3 such that the difference (C - D) == 3 (mod 6), C - D = 3 (2n - 1) for n > 1, and the difference between the positive cubes C^3 - D^3 is equal to a centered cube number, C^3 - D^3 = B^3 + (B+1)^3, with C > D > B > 0, and A > 0, A = 27*t^3 *(27*t^6+1)/4 with t = 2*n-1, and where A = A352759(n), B = A355751(n), C = a(n) (this sequence), and D = A355753(n).
There are infinitely many such numbers a(n) = C in this sequence.

Examples

			a(1) = 6 belongs to the sequence as 6^3 - 3^3 = 4^3 + 5^3 = 189 and 6 - 3 = 3 = 3 (2*1 - 1).
a(2) = 369 belongs to the sequence as 369^3 - 360^3 = 121^3 + 122^3 = 3587409 and 369 - 360 = 9 = 3*(2*2 - 1).
a(3) = 3*(2*3 - 1)*( 3*(2*3 - 1)^3 + 1) / 2 = 2820.
a(4) = 3*a(3) - 3*a(2) + a(1) + 1728*2 = 3*2820 - 3*369 + 6 + 1728*2  = 10815.
		

Crossrefs

Programs

  • Maple
    restart; for n to 20 do (1/2)* 3*(2*n - 1)*(3*(2*n - 1)^3+1); end do;
  • PARI
    a(n)=3*(2*n-1)*(3*(2*n-1)^3+1)/2 \\ Charles R Greathouse IV, Oct 21 2022

Formula

a(n)^3 - A355753(n)^3 = A355751(n)^3 + (A355751(n) + 1)^3 = A352759(n) and a(n) - A355753(n) = 3*(2*n - 1).
a(n) = 3*(2*n - 1)*( 3*(2*n - 1)^3 + 1) / 2.
For n > 3, a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) + 1728*(n - 2), with a(1) = 6, a(2) = 369 and a(3) = 2820.
a(n) can be extended for negative n such that a(-n) = a(n+1) - 3*(2*n + 1).
G.f.: -3*x*(2+113*x+345*x^2+115*x^3+x^4) / (x-1)^5 . - R. J. Mathar, Aug 03 2022