cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A355753 a(n) = 3*(2*n - 1)*( 3*(2*n - 1)^3 - 1) / 2 for n > 0.

Original entry on oeis.org

3, 360, 2805, 10794, 29511, 65868, 128505, 227790, 375819, 586416, 875133, 1259250, 1757775, 2391444, 3182721, 4155798, 5336595, 6752760, 8433669, 10410426, 12715863, 15384540, 18452745, 21958494, 25941531, 30443328, 35507085, 41177730, 47501919, 54528036, 62306193, 70888230, 80327715, 90679944, 102001941, 114352458, 127791975
Offset: 1

Views

Author

Vladimir Pletser, Jul 15 2022

Keywords

Comments

Numbers D > 0 such that A = B^3 + (B+1)^3 = C^3 - D^3 such that the difference C - D == 3 (mod 6), C - D = 3*(2*n - 1) for n > 1, and the difference of the positive cubes C^3 - D^3 is equal to centered cube numbers, with C > D > B > 0, and A > 0, A = 27*t^3 *(27*t^6+1)/4 with t = 2*n-1, and where A = A352759(n), B = A355751(n), C = A355752(n), and D = a(n) (this sequence).
There are infinitely many such numbers a(n) = D in this sequence.
Subsequence of A352136 and of A352223.

Examples

			a(1) = 3 belongs to the sequence as 6^3 - 3^3 = 4^3 + 5^3 = 189 and 6 - 3 = 3 = 3*(2*1 - 1).
a(2) = 360 belongs to the sequence as 369^3 - 360^3 = 121^3 + 122^3 = 3587409 and 369 - 360 = 9 = 3*(2*2 - 1).
a(3) = 3*(2*3 - 1)*( 3*(2*3 - 1)^3 - 1) / 2 = 2805.
a(4) = 3*a(3) - 3*a(2) + a(1) + 1728*2 = 3*2805 - 3*360 + 3 + 1728*2  = 10794.
		

Crossrefs

Programs

  • Maple
    restart; for n to 20 do (1/2)* 3*(2*n - 1)*(3*(2*n - 1)^3-1); end do;

Formula

A355752(n)^3 - a(n)^3 = A355751(n)^3 + (A355751(n) + 1)^3 = A352759(n) and A355752(n) - a(n) = 3*(2*n - 1).
a(n) = 3*(2*n - 1)*( 3*(2*n - 1)^3 - 1) / 2 for n > 0.
For n > 3, a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) + 1728*(n - 2), with a(1) = 3, a(2) = 360 and a(3) = 2805.
a(n) can be extended for negative n such that a(-n) = a(n+1) + (2n + 1).
G.f.: -3*x*(1+115*x+345*x^2+113*x^3+2*x^4) / (x-1)^5 . - R. J. Mathar, Aug 03 2022