cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A355754 Irregular triangle read by rows: T(n,k) is the number of unlabeled n-node graphs with intersection number (or edge clique cover number) k; n >= 1, 0 <= k <= floor(n^2/4).

This page as a plain text file.
%I A355754 #23 Apr 02 2025 10:26:26
%S A355754 1,1,1,1,2,1,1,3,4,2,1,1,4,9,10,7,2,1,1,5,17,36,46,30,14,4,2,1,1,6,28,
%T A355754 97,219,281,226,116,45,18,5,1,1,1,7,43,226,872,2104,3170,2927,1774,
%U A355754 793,290,87,37,9,3,2,1,1,8,62,472,2966,12882,36595,63842,69294,48881,24939,9808,3387,1059,313,107,37,9,4,1,1
%N A355754 Irregular triangle read by rows: T(n,k) is the number of unlabeled n-node graphs with intersection number (or edge clique cover number) k; n >= 1, 0 <= k <= floor(n^2/4).
%H A355754 Eric W. Weisstein, <a href="/A355754/b355754.txt">Table of n, a(n) for n = 1..108</a>
%H A355754 Paul Erdős, A. W. Goodman, and Louis Pósa, <a href="https://doi.org/10.4153%2FCJM-1966-014-3">The representation of a graph by set intersections</a>, Canadian Journal of Mathematics 18 (1966), 106-112.
%H A355754 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/IntersectionNumber.html">Intersection Number</a>
%H A355754 Wikipedia, <a href="https://en.wikipedia.org/wiki/Intersection_number_(graph_theory)">Intersection number</a>
%F A355754 T(n,0) = 1.
%F A355754 T(n,1) = n-1.
%F A355754 T(n,2) = floor((n-2)*(2*n^2+7*n-12)/24) = A005744(n-2) = (4*n^3+6*n^2-52*n+45+3*(-1)^n)/48.
%e A355754 Triangle begins:
%e A355754   n\k | 0  1  2   3   4    5    6    7    8   9  10 11 12 13 14 15 16
%e A355754   ----+--------------------------------------------------------------
%e A355754    1  | 1
%e A355754    2  | 1  1
%e A355754    3  | 1  2  1
%e A355754    4  | 1  3  4   2   1
%e A355754    5  | 1  4  9  10   7    2    1
%e A355754    6  | 1  5 17  36  46   30   14    4    2   1
%e A355754    7  | 1  6 28  97 219  281  226  116   45  18   5  1  1
%e A355754    8  | 1  7 43 226 872 2104 3170 2927 1774 793 290 87 37  9  3  2  1
%Y A355754 Cf. A000088 (row sums), A005744 (column k=2), A355755.
%K A355754 nonn,tabf
%O A355754 1,5
%A A355754 _Pontus von Brömssen_, Jul 16 2022