This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A355756 #8 Jul 18 2022 19:29:58 %S A355756 0,0,1,0,2,1,0,4,2,1,0,6,4,2,1,0,9,4,4,2,1,0,12,6,4,4,2,1,0,16,9,5,4, %T A355756 4,2,1,0,20,9,6,5,4,4,2,1,0,25,12,9,6,5,4,4,2,1,0,30,16,9,6,6,5,4,4,2, %U A355756 1 %N A355756 Triangle read by rows: A(n,k) is the intersection number of the Turán graph T(n,k), 1 <= k <= n. %H A355756 Wikipedia, <a href="https://en.wikipedia.org/wiki/Intersection_number_(graph_theory)">Intersection number</a> %H A355756 Wikipedia, <a href="https://en.wikipedia.org/wiki/Turán_graph">Turán graph</a> %F A355756 A(n,1) = 0. %F A355756 A(n,2) = floor(n^2/4) = A002620(n). %F A355756 A(n,3) = floor((n+1)/3)*floor((n+2)/3) = A008133(n+1). %F A355756 A(n,n-k) = A(2*k,k) for 2 <= k <= n/2. %F A355756 A(n,n-1) = 2 for n >= 3. %F A355756 A(n,n) = 1 for n >= 2. %F A355756 A(n,k) >= floor((n+k-1)/k)*floor((n+k-2)/k) for k >= 2. %e A355756 Triangle begins: %e A355756 n\k | 1 2 3 4 5 6 7 8 9 10 11 %e A355756 ----+-------------------------------- %e A355756 1 | 0 %e A355756 2 | 0 1 %e A355756 3 | 0 2 1 %e A355756 4 | 0 4 2 1 %e A355756 5 | 0 6 4 2 1 %e A355756 6 | 0 9 4 4 2 1 %e A355756 7 | 0 12 6 4 4 2 1 %e A355756 8 | 0 16 9 5 4 4 2 1 %e A355756 9 | 0 20 9 6 5 4 4 2 1 %e A355756 10 | 0 25 12 9 6 5 4 4 2 1 %e A355756 11 | 0 30 16 9 6 6 5 4 4 2 1 %o A355756 (Python) %o A355756 from networkx import find_cliques,turan_graph %o A355756 from itertools import combinations,count %o A355756 def A355756(n,k): %o A355756 if k==1: return 0 %o A355756 G=turan_graph(n,k) %o A355756 cliques=[sorted(c) for c in find_cliques(G)] %o A355756 ne=G.number_of_edges() %o A355756 for r in count(1): %o A355756 for c0 in combinations(cliques[1:],r-1): %o A355756 c=(cliques[0],)+c0 %o A355756 if len(set().union(e for i in range(r) for e in combinations(c[i],2)))==ne: %o A355756 return r %Y A355756 Cf. A002620, A008133, A355754. %K A355756 nonn,tabl,more %O A355756 1,5 %A A355756 _Pontus von Brömssen_, Jul 16 2022