cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A355770 a(n) is the number of terms of A333369 that divide n.

This page as a plain text file.
%I A355770 #20 Jul 30 2022 12:36:49
%S A355770 1,1,2,1,2,2,2,1,3,2,1,2,2,2,4,1,2,3,2,2,3,2,1,2,2,2,3,2,1,4,2,1,2,2,
%T A355770 4,3,2,2,4,2,1,3,1,3,5,1,1,2,2,2,4,2,2,3,2,2,4,1,2,4,1,2,4,1,3,4,1,2,
%U A355770 2,4,2,3,2,2,5,2,2,4,2,2,3,1,1,3,3,1,2
%N A355770 a(n) is the number of terms of A333369 that divide n.
%t A355770 q[n_] := AllTrue[Tally @ IntegerDigits[n], EvenQ[Plus @@ #] &]; a[n_] := DivisorSum[n, 1 &, q[#] &]; Array[a, 100] (* _Amiram Eldar_, Jul 16 2022 *)
%o A355770 (Python)
%o A355770 from sympy import divisors
%o A355770 def c(n): s = str(n); return all(s.count(d)%2 == int(d)%2 for d in set(s))
%o A355770 def a(n): return sum(1 for d in divisors(n, generator=True) if c(d))
%o A355770 print([a(n) for n in range(1, 88)]) # _Michael S. Branicky_, Jul 16 2022
%o A355770 (PARI) issimber(m) = my(d=digits(m), s=Set(d)); for (i=1, #s, if (#select(x->(x==s[i]), d) % 2 != (s[i] % 2), return (0))); return (1); \\ A333369
%o A355770 a(n) = sumdiv(n, d, issimber(d)); \\ _Michel Marcus_, Jul 18 2022
%Y A355770 Cf. A333369, A353735, A355771, A355772, A355773.
%Y A355770 Similar sequences: A083230, A087990, A087991, A332268, A355302.
%K A355770 nonn,base
%O A355770 1,3
%A A355770 _Bernard Schott_, Jul 16 2022
%E A355770 More terms from _Michael S. Branicky_, Jul 16 2022