This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A355770 #20 Jul 30 2022 12:36:49 %S A355770 1,1,2,1,2,2,2,1,3,2,1,2,2,2,4,1,2,3,2,2,3,2,1,2,2,2,3,2,1,4,2,1,2,2, %T A355770 4,3,2,2,4,2,1,3,1,3,5,1,1,2,2,2,4,2,2,3,2,2,4,1,2,4,1,2,4,1,3,4,1,2, %U A355770 2,4,2,3,2,2,5,2,2,4,2,2,3,1,1,3,3,1,2 %N A355770 a(n) is the number of terms of A333369 that divide n. %t A355770 q[n_] := AllTrue[Tally @ IntegerDigits[n], EvenQ[Plus @@ #] &]; a[n_] := DivisorSum[n, 1 &, q[#] &]; Array[a, 100] (* _Amiram Eldar_, Jul 16 2022 *) %o A355770 (Python) %o A355770 from sympy import divisors %o A355770 def c(n): s = str(n); return all(s.count(d)%2 == int(d)%2 for d in set(s)) %o A355770 def a(n): return sum(1 for d in divisors(n, generator=True) if c(d)) %o A355770 print([a(n) for n in range(1, 88)]) # _Michael S. Branicky_, Jul 16 2022 %o A355770 (PARI) issimber(m) = my(d=digits(m), s=Set(d)); for (i=1, #s, if (#select(x->(x==s[i]), d) % 2 != (s[i] % 2), return (0))); return (1); \\ A333369 %o A355770 a(n) = sumdiv(n, d, issimber(d)); \\ _Michel Marcus_, Jul 18 2022 %Y A355770 Cf. A333369, A353735, A355771, A355772, A355773. %Y A355770 Similar sequences: A083230, A087990, A087991, A332268, A355302. %K A355770 nonn,base %O A355770 1,3 %A A355770 _Bernard Schott_, Jul 16 2022 %E A355770 More terms from _Michael S. Branicky_, Jul 16 2022