This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A355772 #25 Jul 30 2022 12:37:39 %S A355772 1,3,9,15,45,105,195,315,900,1575,2100,3900,6300,18900,25200,27300, %T A355772 31500,44100,81900,220500,245700,333900,409500,491400,573300,600600, %U A355772 1201200,2402400,3603600,4804800,7207200,10810800,14414400,20420400,21621600,40840800,43243200 %N A355772 Positions of records in A355770. %C A355772 Corresponding records are 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 17, ... %e A355772 a(5) = 45 is in the sequence because A355770(45) = 5 is larger than any earlier value in A355770. %t A355772 q[n_] := AllTrue[Tally @ IntegerDigits[n], EvenQ[Plus @@ #] &]; f[n_] := DivisorSum[n, 1 &, q[#] &]; fm = -1; s = {}; Do[If[(fn = f[n]) > fm, fm = fn; AppendTo[s, n]], {n, 1, 10^5}]; s (* _Amiram Eldar_, Jul 18 2022 *) %o A355772 (Python) %o A355772 from sympy import divisors %o A355772 from itertools import count, islice %o A355772 def c(n): s = str(n); return all(s.count(d)%2 == int(d)%2 for d in set(s)) %o A355772 def f(n): return sum(1 for d in divisors(n, generator=True) if c(d)) %o A355772 def agen(record=-1): %o A355772 for k in count(1): %o A355772 if f(k) > record: record = f(k); yield k %o A355772 print(list(islice(agen(), 20))) # _Michael S. Branicky_, Jul 25 2022 %Y A355772 Cf. A333369, A353735, A355770, A355771, A355773. %Y A355772 Similar sequences: A093036, A093037, A340549, A350424. %K A355772 nonn,base %O A355772 1,2 %A A355772 _Bernard Schott_, Jul 18 2022 %E A355772 a(21)-a(31) from _Michel Marcus_, Jul 18 2022 %E A355772 a(32)-a(37) from _Amiram Eldar_, Jul 18 2022