A355776 Partition triangle read by rows. A statistic of permutations whose Lehmer code is nonmonotonic, refining triangle A356116.
0, 0, 0, 0, 0, 1, 0, 0, 3, 2, 5, 0, 0, 6, 10, 22, 24, 16, 0, 0, 10, 20, 12, 61, 162, 29, 102, 150, 42, 0, 0, 15, 35, 49, 135, 432, 246, 273, 391, 1389, 461, 388, 698, 99, 0, 0, 21, 56, 90, 52, 260, 982, 1288, 740, 827, 1150, 4974, 2745, 5778, 482, 2057, 8924, 4148, 1333, 2764, 219, 0
Offset: 0
Examples
Table T(n, k) starts: [0] 0; [1] 0; [2] 0, 0; [3] 0, 1, 0; [4] 0, [3, 2], 5, 0; [5] 0, [6, 10], [22, 24], 16, 0; [6] 0, [10, 20, 12], [61, 162, 29], [102, 150], 42, 0; [7] 0, [15, 35, 49], [135, 432, 246, 273], [391, 1389, 461], [388, 698], 99, 0; Summing the bracketed terms reduces the triangle to A356116. . The permutations whose Lehmer code is nonmonotonic, in the case n = 4, k = 1 are: 1243, 1324, 1423, which map to the partition [3, 1] and 1342, 2143, which map to the partition [2, 2]. Thus A356116(4, 1) = 3 + 2 = 5. . The cardinality of the preimage of the partitions, i.e. the number of permutations whose Lehmer code is nonmonotonic, are the terms of the sequence. Here row 6: [6] => 0 [5, 1] => 10 [4, 2] => 20 [3, 3] => 12 [4, 1, 1] => 61 [3, 2, 1] => 162 [2, 2, 2] => 29 [3, 1, 1, 1] => 102 [2, 2, 1, 1] => 150 [2, 1, 1, 1, 1] => 42 [1, 1, 1, 1, 1, 1] => 0
Links
- Peter Luschny, Permutations with Lehmer, a SageMath Jupyter Notebook.
Crossrefs
Programs
-
SageMath
import collections def perm_lehmer_nonmono_stats(n): res = collections.defaultdict(int) for p in Permutations(n): l = p.to_lehmer_code() if all(x >= y for x, y in zip(l, l[1:])): continue c = [l.count(i) for i in range(len(p)) if i in l] res[Partition(reversed(sorted(c)))] += 1 return sorted(res.items(), key=lambda x: len(x[0])) @cached_function def A355776_row(n): if n < 2: return [0] S = perm_lehmer_nonmono_stats(n) return [0] + [s[1] for s in S] + [0] def A355776(n, k): return A355776_row(n)[k] if n > 0 else 0 for n in range(0, 8): print(A355776_row(n))
Comments