cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A355779 E.g.f. satisfies A(x) = 1/(1 - x)^(2 * A(x)).

This page as a plain text file.
%I A355779 #18 Jul 18 2022 11:47:44
%S A355779 1,2,14,168,2912,66600,1900056,65101120,2606993728,119561789952,
%T A355779 6181730106240,355838533286016,22573258090527360,1564818434983235328,
%U A355779 117698836976753297664,9547346757806586746880,830846347686871026714624,77215374643802544102187008
%N A355779 E.g.f. satisfies A(x) = 1/(1 - x)^(2 * A(x)).
%F A355779 E.g.f.: exp( -LambertW(2 * log(1-x)) ).
%F A355779 a(n) = Sum_{k=0..n} 2^k * (k+1)^(k-1) * |Stirling1(n,k)|.
%F A355779 From _Vaclav Kotesovec_, Jul 18 2022: (Start)
%F A355779 E.g.f.: LambertW(2 * log(1-x)) / (2 * log(1-x)).
%F A355779 a(n) ~ sqrt(2) * n^(n-1) * exp(3/2 - n + n*exp(-1)/2) / (exp(exp(-1)/2) - 1)^(n - 1/2). (End)
%o A355779 (PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(-lambertw(2*log(1-x)))))
%o A355779 (PARI) a(n) = sum(k=0, n, 2^k*(k+1)^(k-1)*abs(stirling(n, k, 1)));
%Y A355779 Cf. A052813, A351275, A355786.
%K A355779 nonn
%O A355779 0,2
%A A355779 _Seiichi Manyama_, Jul 16 2022